Suppr超能文献

绘制 kainate 受体的配体结合位点图谱:拮抗剂 [3H]UBP310 对亚基选择性结合的分子决定因素。

Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.

机构信息

MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom.

出版信息

Mol Pharmacol. 2010 Dec;78(6):1036-45. doi: 10.1124/mol.110.067934. Epub 2010 Sep 13.

Abstract

Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and different combinations of subunits confer different properties to KARs. Here we report the characterization of a new GluK1 subunit-selective radiolabeled antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione ([(3)H]UBP310) using human recombinant KARs. [(3)H]UBP310 binds to GluK1 with low nanomolar affinity (K(D) = 21 ± 7 nM) but shows no specific binding to GluK2. However, [(3)H]UBP310 also binds to GluK3 (K(D) = 0.65 ± 0.19 μM) but with ~30-fold lower affinity than that observed for GluK1. Competition [(3)H]UBP310 binding experiments on GluK1 revealed the same rank order of affinity of known GluK1-selective ligands as reported previously in functional assays. Nonconserved residues in GluK1-3 adjudged in modeling studies to be important in determining the GluK1 selectivity of UBP310 were point-mutated to switch residues between subunits. None of the mutations altered the expression or trafficking of KAR subunits. Whereas GluK1-T503A mutation diminished [(3)H]UBP310 binding, GluK2-A487T mutation rescued it. Likewise, whereas GluK1-N705S/S706N mutation decreased, GluK3-N691S mutation increased [(3)H]UBP310 binding activity. These data show that Ala487 in GluK2 and Asn691 in GluK3 are important determinants in reducing the affinity of UBP310 for these subunits. Insights from these modeling and point mutation studies will aid the development of new subunit-selective KAR antagonists.

摘要

红藻氨酸受体 (KARs) 调节突触传递和可塑性,其功能障碍与癫痫和慢性疼痛等多种疾病状态有关。KARs 由五个不同的亚基组成四聚体。GluK1-3 是低亲和力红藻氨酸结合亚基,而 GluK4/5 则与红藻氨酸高亲和力结合。许多这些亚基可以存在于任何给定的细胞类型中,并且亚基的不同组合赋予 KARs 不同的特性。在这里,我们使用人重组 KAR 报告了一种新的 GluK1 亚基选择性放射性标记拮抗剂 (S)-1-(2-氨基-2-羧乙基)-3-(2-羧基噻吩-3-基甲基)-5-甲基嘧啶-2,4-二酮 ([(3)H]UBP310) 的特性。[(3)H]UBP310 与 GluK1 结合具有低纳摩尔亲和力 (K(D) = 21 ± 7 nM),但与 GluK2 没有特异性结合。然而,[(3)H]UBP310 也与 GluK3 结合 (K(D) = 0.65 ± 0.19 μM),但亲和力比观察到的 GluK1 低约 30 倍。在 GluK1 上进行的 [(3)H]UBP310 结合实验的竞争表明,在功能测定中报告的已知 GluK1 选择性配体的亲和力具有相同的顺序。在建模研究中,鉴定为决定 UBP310 对 GluK1 选择性的 GluK1-3 中的非保守残基被点突变以在亚基之间切换残基。这些突变都没有改变 KAR 亚基的表达或运输。GluK1-T503A 突变虽然降低了 [(3)H]UBP310 的结合,但 GluK2-A487T 突变却恢复了它。同样,GluK1-N705S/S706N 突变降低了 [(3)H]UBP310 的结合活性,而 GluK3-N691S 突变增加了它。这些数据表明,GluK2 中的丙氨酸 487 和 GluK3 中的天冬酰胺 691 是降低 UBP310 对这些亚基亲和力的重要决定因素。这些建模和点突变研究的见解将有助于开发新的亚基选择性 KAR 拮抗剂。

相似文献

2
Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
Neurochem Res. 2019 Mar;44(3):585-599. doi: 10.1007/s11064-018-2654-0. Epub 2018 Oct 9.
3
Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.
J Neurochem. 2016 Jan;136(2):295-305. doi: 10.1111/jnc.13384. Epub 2015 Oct 30.
5
Antagonism of recombinant and native GluK3-containing kainate receptors.
Neuropharmacology. 2009 Jan;56(1):131-40. doi: 10.1016/j.neuropharm.2008.08.002. Epub 2008 Aug 12.
6
ACET is a highly potent and specific kainate receptor antagonist: characterisation and effects on hippocampal mossy fibre function.
Neuropharmacology. 2009 Jan;56(1):121-30. doi: 10.1016/j.neuropharm.2008.08.016. Epub 2008 Aug 22.
7
Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
Cell Mol Neurobiol. 2013 Nov;33(8):1099-108. doi: 10.1007/s10571-013-9976-x. Epub 2013 Aug 23.
8
Modulation of homomeric and heteromeric kainate receptors by the auxiliary subunit Neto1.
J Physiol. 2013 Oct 1;591(19):4711-24. doi: 10.1113/jphysiol.2013.256776. Epub 2013 Jun 24.
9
Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors.
J Med Chem. 2012 Jan 12;55(1):327-41. doi: 10.1021/jm201230z. Epub 2011 Dec 14.
10
Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine.
Neuropharmacology. 2010 Mar;58(3):640-9. doi: 10.1016/j.neuropharm.2009.11.013. Epub 2009 Dec 4.

引用本文的文献

1
α2δ-2 regulates synaptic GluK1 kainate receptors in Purkinje cells and motor coordination.
Brain. 2025 Apr 3;148(4):1271-1285. doi: 10.1093/brain/awae333.
3
Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25851-25858. doi: 10.1073/pnas.2007471117. Epub 2020 Sep 30.
4
Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
Neurochem Res. 2019 Mar;44(3):585-599. doi: 10.1007/s11064-018-2654-0. Epub 2018 Oct 9.
6
The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels.
Br J Pharmacol. 2013 Dec;170(8):1582-606. doi: 10.1111/bph.12446.
7
Kainate receptor subunit diversity underlying response diversity in retinal off bipolar cells.
J Physiol. 2014 Apr 1;592(7):1457-77. doi: 10.1113/jphysiol.2013.265033. Epub 2014 Jan 6.
8
Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell.
J Neurophysiol. 2012 Apr;107(7):1795-807. doi: 10.1152/jn.00924.2011. Epub 2011 Dec 28.
9
Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors.
J Med Chem. 2012 Jan 12;55(1):327-41. doi: 10.1021/jm201230z. Epub 2011 Dec 14.

本文引用的文献

1
Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition.
J Neurochem. 2010 Sep;114(6):1805-18. doi: 10.1111/j.1471-4159.2010.06895.x. Epub 2010 Jul 30.
2
Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists.
Neuropharmacology. 2011 Jan;60(1):126-34. doi: 10.1016/j.neuropharm.2010.06.002. Epub 2010 Jun 15.
4
The SWISS-MODEL Repository and associated resources.
Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92. doi: 10.1093/nar/gkn750. Epub 2008 Oct 18.
5
Kainate receptors: pharmacology, function and therapeutic potential.
Neuropharmacology. 2009 Jan;56(1):90-113. doi: 10.1016/j.neuropharm.2008.08.023. Epub 2008 Aug 28.
6
ACET is a highly potent and specific kainate receptor antagonist: characterisation and effects on hippocampal mossy fibre function.
Neuropharmacology. 2009 Jan;56(1):121-30. doi: 10.1016/j.neuropharm.2008.08.016. Epub 2008 Aug 22.
7
Antagonism of recombinant and native GluK3-containing kainate receptors.
Neuropharmacology. 2009 Jan;56(1):131-40. doi: 10.1016/j.neuropharm.2008.08.002. Epub 2008 Aug 12.
9
Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface.
Neuroscientist. 2006 Jun;12(3):232-44. doi: 10.1177/1073858405283828.
10
Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
J Neurosci. 2006 Mar 15;26(11):2852-61. doi: 10.1523/JNEUROSCI.0123-06.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验