Suppr超能文献

用于在线脑机接口的运动皮层神经编码的即时估计。

Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.

机构信息

Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, People's Republic of China.

出版信息

J Neural Eng. 2010 Oct;7(5):056010. doi: 10.1088/1741-2560/7/5/056010. Epub 2010 Sep 14.

Abstract

Recently, the authors published a sequential decoding algorithm for motor brain-machine interfaces (BMIs) that infers movement directly from spike trains and produces a new kinematic output every time an observation of neural activity is present at its input. Such a methodology also needs a special instantaneous neuronal encoding model to relate instantaneous kinematics to every neural spike activity. This requirement is unlike the tuning methods commonly used in computational neuroscience, which are based on time windows of neural and kinematic data. This paper develops a novel, online, encoding model that uses the instantaneous kinematic variables (position, velocity and acceleration in 2D or 3D space) to estimate the mean value of an inhomogeneous Poisson model. During BMI decoding the mapping from neural spikes to kinematics is one to one and easy to implement by simply reading the spike times directly. Due to the high temporal resolution of the encoding, the delay between motor cortex neurons and kinematics needs to be estimated in the encoding stage. Mutual information is employed to select the optimal time index defined as the lag for which the spike event is maximally informative with respect to the kinematics. We extensively compare the windowed tuning models with the proposed method. The big difference between them resides in the high firing rate portion of the tuning curve, which is rather important for BMI-decoding performance. This paper shows that implementing such an instantaneous tuning model in sequential Monte Carlo point process estimation based on spike timing provides statistically better kinematic reconstructions than the linear and exponential spike-tuning models.

摘要

最近,作者发表了一种针对运动脑机接口(BMI)的序贯解码算法,该算法直接从尖峰序列中推断运动,并在输入处存在神经活动的观察时,每次产生新的运动学输出。这种方法还需要一种特殊的瞬时神经元编码模型,将瞬时运动学与每个神经元尖峰活动相关联。这种要求与计算神经科学中常用的调谐方法不同,后者基于神经和运动学数据的时间窗口。本文开发了一种新颖的在线编码模型,该模型使用瞬时运动学变量(二维或三维空间中的位置、速度和加速度)来估计非齐次泊松模型的平均值。在 BMI 解码期间,从神经元尖峰到运动学的映射是一对一的,并且通过直接读取尖峰时间很容易实现。由于编码的时间分辨率很高,因此需要在编码阶段估计运动皮层神经元和运动学之间的延迟。互信息用于选择最佳时间索引,该索引定义为关于运动学的尖峰事件具有最大信息量的滞后。我们广泛比较了带窗调谐模型与所提出的方法。它们之间的主要区别在于调谐曲线的高发射率部分,这对于 BMI 解码性能非常重要。本文表明,在基于尖峰时间的序贯蒙特卡罗点过程估计中实现这种瞬时调谐模型,可以提供比线性和指数尖峰调谐模型更好的运动学重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验