Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
Am J Physiol Cell Physiol. 2010 Dec;299(6):C1398-401. doi: 10.1152/ajpcell.00222.2010. Epub 2010 Sep 15.
It has been accepted for half a century that, for a given level of activation, the steady-state isometric force of a muscle sarcomere depends exclusively on the amount of overlap between the contractile filaments actin and myosin, or equivalently sarcomere length (Gordon AM et al., J Physiol 184: 170-192, 1966). Moreover, according to the generally accepted paradigm of muscle contraction, the cross-bridge theory (Huxley AF, Prog Biophys Biophys Chem 7: 255-318, 1957), this steady-state isometric sarcomere force is independent of the muscle's contractile history (Huxley AF, Prog Biophys Biophys Chem 7: 255-318, 1957; Walcott S and Herzog W, Math Biosci 216: 172-186, 2008); i.e., it is independent of whether a muscle is held at a constant length before and during the contraction or whether the muscle is shortened or lengthened to the same constant length. This, however, is not the case, as muscles and single fibers that are stretched show greatly increased steady-state isometric forces compared with preparations that are held at a constant length (Abbott BC and Aubert XM, J Physiol 117: 77-86, 1952; De Ruiter CJ et al., J Physiol 526.3: 671-681, 2000; Edman KAP et al., J Physiol 281: 139-155, 1978; Edman KAP et al., J Gen Physiol 80: 769-784, 1982; Edman KAP and Tsuchiya T, J Physiol 490.1: 191-205, 1996). This so-called "residual force enhancement" (Edman KAP et al., J Gen Physiol 80: 769-784, 1982) offers a perplexing puzzle for muscle physiologists. Many theories have been advanced to address the discrepancy between prediction and observation with the most popular and accepted being the sarcomere length nonuniformity theory (Morgan DL, Biophys J 57: 209-221, 1990), which explains the residual force enhancement with the development of large nonuniformities in sarcomere lengths during muscle stretching. Here, we performed experiments in mechanically isolated sarcomeres and observed that the residual force enhancement following active stretching is preserved. Since our preparation utilizes a single sarcomere, a redistribution of the length of neighboring sarcomeres to produce the higher force following stretch is, by design, precluded. Furthermore, the enhanced forces in the single sarcomeres always exceed the isometric forces on the plateau of the force-length relationship, thereby eliminating the possibility that our result might have been obtained because of a redistribution of half-sarcomere lengths. Since force enhancement in single myofibrils has been associated with actin-titin interactions (Kulke M et al., Circ Res 89: 874-881, 2001; Li Q et al., Biophys J 69: 1508-1518, 1995) and calcium binding to titin (Joumaa V et al., Am J Physiol Cell Physiol 294: C74-C78, 2008; Labeit D et al., Proc Natl Acad Sci USA 100: 13716-13721, 2003), titin may regulate the sarcomeric force enhancement observed here.
半个世纪以来,人们一直认为,在给定的激活水平下,肌节的稳态等长力仅取决于肌动蛋白和肌球蛋白收缩丝之间的重叠量,或者等效地说,取决于肌节长度(Gordon AM 等人,J Physiol 184:170-192, 1966)。此外,根据肌肉收缩的普遍接受的范式,即横桥理论(Huxley AF,Prog Biophys Biophys Chem 7:255-318, 1957),这种稳态等长肌节力与肌肉的收缩历史无关(Huxley AF,Prog Biophys Biophys Chem 7:255-318, 1957;Walcott S 和 Herzog W,Math Biosci 216:172-186, 2008);即,它与肌肉在收缩前和收缩期间是否保持在恒定长度无关,也与肌肉是否被缩短或延长到相同的恒定长度无关。然而,事实并非如此,因为与保持在恒定长度的制剂相比,伸展的肌肉和单根纤维显示出大大增加的稳态等长力(Abbott BC 和 Aubert XM,J Physiol 117:77-86, 1952;De Ruiter CJ 等人,J Physiol 526.3:671-681, 2000;Edman KAP 等人,J Physiol 281:139-155, 1978;Edman KAP 等人,J Gen Physiol 80:769-784, 1982;Edman KAP 和 Tsuchiya T,J Physiol 490.1:191-205, 1996)。这种所谓的“残余力增强”(Edman KAP 等人,J Gen Physiol 80:769-784, 1982)为肌肉生理学家提供了一个令人困惑的难题。已经提出了许多理论来解决预测与观察之间的差异,其中最受欢迎和接受的是肌节长度不均匀性理论(Morgan DL,Biophys J 57:209-221, 1990),该理论解释了残余力增强是由于肌肉伸展过程中肌节长度的不均匀性增大所致。在这里,我们在机械分离的肌节中进行了实验,观察到主动伸展后残余力增强得以保留。由于我们的制剂利用单个肌节,因此设计上排除了为产生更高的力而重新分配相邻肌节长度的可能性。此外,单个肌节中的增强力始终超过力-长度关系平台上的等长力,从而排除了我们的结果可能是由于半肌节长度重新分配而获得的可能性。由于肌球蛋白纤维中的力增强与肌动蛋白-titin 相互作用有关(Kulke M 等人,Circ Res 89:874-881, 2001;Li Q 等人,Biophys J 69:1508-1518, 1995)和钙结合到 titin(Joumaa V 等人,Am J Physiol Cell Physiol 294:C74-C78, 2008;Labeit D 等人,Proc Natl Acad Sci USA 100:13716-13721, 2003),因此 titin 可能调节了这里观察到的肌节力增强。