Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China.
J Comput Chem. 2011 Mar;32(4):658-67. doi: 10.1002/jcc.21650. Epub 2010 Sep 15.
Stimulated by the recent isolation and characterization of C₅₆Cl₁₀ chlorofullerene (Tan et al., J Am Chem Soc 2008, 130, 15240), we perform a systematic study on the geometrical structures, thermochemistry, and electronic and optical properties of C₅₆X₁₀ (X = H, F, and Cl) on the basis of density functional theory (DFT). Compared with pristine C₅₆, the equatorial carbon atoms in C₅₆X₁₀ are saturated by X atoms and change to sp³ hybridization to release the large local strains. The addition reactions C₅₆ + 5X₂ --> C₅₆X₁₀ are highly exothermic, and the optimal temperature for synthesizing C₅₆X₁₀ should be ranged between 500 and 1000 K. By combining 10 X atoms at the abutting pentagon vertexes and active sites, C₅₆Cl₁₀ molecules exhibit large energy gaps between the highest occupied and lowest unoccupied molecular orbitals (from 2.84 to 3.00 eV), showing high chemical stabilities. The C₅₆F₁₀ and C₅₆Cl₁₀ could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states is also calculated, which suggest that the frontier molecular orbitals of C₅₆X₁₀ are mainly from the carbon orbitals of two separate annulene subunits, and the contributions derived from X atoms are secondary. In addition, the ultraviolet-visible spectra and second-order hyperpolarizabilities of C₅₆X₁₀ are calculated by means of time-dependent DFT and finite field approach, respectively. Both the average static linear polarizability <α> and second-order hyperpolarizability <γ> of these compounds are larger than those of C₆₀ due to lower symmetric structures and high delocalization of π electron density on the two separate annulene subunits.
受最近分离和表征 C₅₆Cl₁₀ 氯富勒烯(Tan 等人,J Am Chem Soc 2008, 130, 15240)的启发,我们在密度泛函理论(DFT)的基础上对 C₅₆X₁₀(X = H、F 和 Cl)的几何结构、热化学、电子和光学性质进行了系统研究。与原始 C₅₆相比,C₅₆X₁₀ 的赤道碳原子被 X 原子饱和并变为 sp³杂化,从而释放出大量的局部应变。C₅₆ + 5X₂ --> C₅₆X₁₀ 的加成反应是高度放热的,合成 C₅₆X₁₀ 的最佳温度应在 500 到 1000 K 之间。通过在相邻的五边形顶点和活性位点处结合 10 个 X 原子,C₅₆Cl₁₀ 分子表现出最高占据分子轨道和最低未占据分子轨道之间的大能隙(从 2.84 到 3.00 eV),表现出高化学稳定性。由于具有较大的垂直电子亲和能,C₅₆F₁₀ 和 C₅₆Cl₁₀ 可能成为潜在光子/光伏应用的优秀电子受体。通过计算态密度,表明 C₅₆X₁₀ 的前线分子轨道主要来自两个独立的并五苯亚基的碳原子轨道,而 X 原子的贡献是次要的。此外,通过时间相关 DFT 和有限场方法分别计算了 C₅₆X₁₀ 的紫外-可见光谱和二阶超极化率。由于结构对称性降低和两个独立的并五苯亚基上的π电子密度高离域,这些化合物的平均静态线性极化率 <α> 和二阶超极化率 <γ> 都大于 C₆₀。