Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
Circ Res. 2010 Nov 12;107(10):1275-89. doi: 10.1161/CIRCRESAHA.110.229054. Epub 2010 Sep 16.
Mechanotransduction and the response to biomechanical stress is a fundamental response in heart disease. Loss of phosphoinositide 3-kinase (PI3K)γ, the isoform linked to G protein-coupled receptor signaling, results in increased myocardial contractility, but the response to pressure overload is controversial.
To characterize molecular and cellular responses of the PI3Kγ knockout (KO) mice to biomechanical stress.
In response to pressure overload, PI3KγKO mice deteriorated at an accelerated rate compared with wild-type mice despite increased basal myocardial contractility. These functional responses were associated with compromised phosphorylation of Akt and GSK-3α. In contrast, isolated single cardiomyocytes from banded PI3KγKO mice maintained their hypercontractility, suggesting compromised interaction with the extracellular matrix as the primary defect in the banded PI3KγKO mice. β-Adrenergic stimulation increased cAMP levels with increased phosphorylation of CREB, leading to increased expression of cAMP-responsive matrix metalloproteinases (MMPs), MMP2, MT1-MMP, and MMP13 in cardiomyocytes and cardiofibroblasts. Loss of PI3Kγ resulted in increased cAMP levels with increased expression of MMP2, MT1-MMP, and MMP13 and increased MMP2 activation and collagenase activity in response to biomechanical stress. Selective loss of N-cadherin from the adhesion complexes in the PI3KγKO mice resulted in reduced cell adhesion. The β-blocker propranolol prevented the upregulation of MMPs, whereas MMP inhibition prevented the adverse remodeling with both therapies, preventing the functional deterioration in banded PI3KγKO mice. In banded wild-type mice, long-term propranolol prevented the adverse remodeling and systolic dysfunction with preservation of the N-cadherin levels.
The enhanced propensity to develop heart failure in the PI3KγKO mice is attributable to a cAMP-dependent upregulation of MMP expression and activity and disorganization of the N-cadherin/β-catenin cell adhesion complex. β-Blocker therapy prevents these changes thereby providing a novel mechanism of action for these drugs.
机械转导和对生物力学应激的反应是心脏病的基本反应。磷酸肌醇 3-激酶(PI3K)γ的缺失,这种同工型与 G 蛋白偶联受体信号有关,导致心肌收缩力增加,但对压力超负荷的反应存在争议。
描述 PI3Kγ 敲除(KO)小鼠对生物力学应激的分子和细胞反应。
在压力超负荷的情况下,与野生型小鼠相比,PI3KγKO 小鼠的恶化速度更快,尽管基础心肌收缩力增加。这些功能反应与 Akt 和 GSK-3α 的磷酸化受损有关。相比之下,从带 PI3KγKO 小鼠分离的单个心肌细胞保持其高收缩性,表明与细胞外基质的相互作用受损是带 PI3KγKO 小鼠的主要缺陷。β-肾上腺素能刺激增加 cAMP 水平,增加 CREB 的磷酸化,导致 cAMP 反应基质金属蛋白酶(MMPs)、MMP2、MT1-MMP 和 MMP13 在心肌细胞和心肌成纤维细胞中的表达增加。PI3Kγ 的缺失导致 cAMP 水平增加,MMP2、MT1-MMP 和 MMP13 的表达增加,以及生物力学应激时 MMP2 激活和胶原酶活性增加。PI3KγKO 小鼠黏附复合物中 N-钙黏蛋白的选择性缺失导致细胞黏附减少。β-阻滞剂普萘洛尔可防止 MMPs 的上调,而 MMP 抑制可防止两种治疗方法的不良重塑,从而防止带 PI3KγKO 小鼠的功能恶化。在带 PI3KγKO 的野生型小鼠中,长期普萘洛尔可防止不良重塑和收缩功能障碍,并保持 N-钙黏蛋白水平。
PI3KγKO 小鼠发生心力衰竭的倾向增加归因于 cAMP 依赖性 MMP 表达和活性上调以及 N-钙黏蛋白/β-连环蛋白细胞黏附复合物的紊乱。β-阻滞剂治疗可防止这些变化,从而为这些药物提供一种新的作用机制。