Institute for Biomedical Engineering, University and ETH Zurich, Switzerland Institute of Pharmacology and Toxicology, University of Zurich, Switzerland PET Center, Department of Nuclear Medicine, University Hospital Zürich, Switzerland.
Pain. 2010 Dec;151(3):655-663. doi: 10.1016/j.pain.2010.08.025. Epub 2010 Sep 20.
Functional magnetic resonance imaging (fMRI) using the blood oxygen level-dependent (BOLD) contrast was used to study sensory processing in the brain of isoflurane-anesthetized mice. The use of a cryogenic surface coil in a small animal 9.4T system provided the sensitivity required for detection and quantitative analysis of hemodynamic changes caused by neural activity in the mouse brain in response to electrical forepaw stimulation at different amplitudes. A gradient echo-echo planar imaging (GE-EPI) sequence was used to acquire five coronal brain slices of 0.5mm thickness. BOLD signal changes were observed in primary and secondary somatosensory cortices, the thalamus and the insular cortex, important regions involved in sensory and nociceptive processing. Activation was observed consistently bilateral despite unilateral stimulation of the forepaw. The temporal BOLD profile was segregated into two signal components with different temporal characteristics. The maximum BOLD amplitude of both signal components correlated strongly with the stimulation amplitude. Analysis of the dynamic behavior of the somatosensory 'fast' BOLD component revealed a decreasing signal decay rate constant k(off) with increasing maximum BOLD amplitude (and stimulation amplitude). This study demonstrates the feasibility of a robust BOLD fMRI protocol to study nociceptive processing in isoflurane-anesthetized mice. The reliability of the method allows for detailed analysis of the temporal BOLD profile and for investigation of somatosensory and noxious signal processing in the brain, which is attractive for characterizing genetically engineered mouse models.
功能磁共振成像(fMRI)使用血氧水平依赖(BOLD)对比来研究异氟烷麻醉小鼠大脑中的感觉处理。在小型动物 9.4T 系统中使用低温表面线圈,为检测和定量分析小鼠大脑中神经活动引起的血流动力学变化提供了所需的灵敏度,这些变化是对不同幅度的前爪电刺激的反应。使用梯度回波-回波平面成像(GE-EPI)序列获取 5 个 0.5mm 厚的冠状脑切片。在初级和次级体感皮层、丘脑和岛叶皮层观察到 BOLD 信号变化,这些区域是参与感觉和伤害性处理的重要区域。尽管对前爪进行了单侧刺激,但仍观察到双侧激活。BOLD 信号的时间特征可分为具有不同时间特征的两个信号分量。两种信号分量的最大 BOLD 幅度与刺激幅度强烈相关。对体感“快”BOLD 分量的动态行为进行分析表明,信号衰减率常数 k(off)随最大 BOLD 幅度(和刺激幅度)的增加而减小。这项研究证明了使用稳健的 BOLD fMRI 方案来研究异氟烷麻醉小鼠伤害性处理的可行性。该方法的可靠性允许对时间 BOLD 轮廓进行详细分析,并研究大脑中的体感和有害信号处理,这对于表征基因工程小鼠模型具有吸引力。
Neuroimage. 2010-3-6
Neuroimage. 2007-4-1
Imaging Neurosci (Camb). 2025-2-18
Nat Chem Biol. 2023-6