TéSA Laboratory, University of Toulouse, Toulouse, France.
IEEE Trans Biomed Eng. 2010 Dec;57(12):2840-9. doi: 10.1109/TBME.2010.2076809. Epub 2010 Sep 16.
Detection and delineation of P- and T-waves are important issues in the analysis and interpretation of electrocardiogram (ECG) signals. This paper addresses this problem by using Bayesian inference to represent a priori relationships among ECG wave components. Based on the recently introduced partially collapsed Gibbs sampler principle, the wave delineation and estimation are conducted simultaneously by using a Bayesian algorithm combined with a Markov chain Monte Carlo method. This method exploits the strong local dependency of ECG signals. The proposed strategy is evaluated on the annotated QT database and compared to other classical algorithms. An important feature of this paper is that it allows not only for the detection of P- and T-wave peaks and boundaries, but also for the accurate estimation of waveforms for each analysis window. This can be useful for some ECG analysis that require wave morphology information.
P 波和 T 波的检测和描绘是心电图(ECG)信号分析和解释中的重要问题。本文通过使用贝叶斯推理来表示心电图波分量之间的先验关系来解决这个问题。基于最近引入的部分折叠吉布斯采样器原理,通过使用结合了马尔可夫链蒙特卡罗方法的贝叶斯算法,同时进行波描绘和估计。该方法利用了心电图信号的强局部相关性。所提出的策略在带注释的 QT 数据库上进行了评估,并与其他经典算法进行了比较。本文的一个重要特点是,它不仅可以检测 P 波和 T 波的峰值和边界,还可以准确估计每个分析窗口的波形。这对于某些需要波形态信息的心电图分析可能很有用。