Interuniversity Institute for Marine Sciences, Eilat, Israel.
PLoS One. 2010 Sep 14;5(9):e12508. doi: 10.1371/journal.pone.0012508.
Reactive oxygen species (ROS) are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems.
METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2)(-)) in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached) and aposymbiont (bleached) corals, and of cultured Symbiodinium (from clades A and C). Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11)-10(-9) mol O(2)(-) mg protein(-1) min(-1) in the dark. In the light, a two-fold enhancement in O(2)(-) production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2)(-) production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI) strongly inhibited O(2)(-) production by corals (and more moderately by algae), possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2)(-) detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2)(-) detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD).
CONCLUSIONS/SIGNIFICANCE: The findings of substantial extracellular O(2)(-) production as well as extracellular O(2)(-) detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O(2)(-), which may in turn be linked to oxidative stress mediated bleaching.
活性氧(ROS)被认为在珊瑚的细胞死亡途径和白化中起主要作用。珊瑚中 ROS 的直接测量明显不足,部分原因是细胞系统中 ROS 定量存在固有问题。
方法/主要发现:在这项研究中,我们描述了石珊瑚(Stylophora pistillata)外部环境中活性氧超氧阴离子自由基(O₂(-))的动态。使用一种灵敏、快速和选择性的基于化学发光的技术,我们测量了共生(非白化)和非共生(白化)珊瑚以及培养的 Symbiodinium(来自 A 类和 C 类)的细胞外超氧化物产生和解毒活性。发现白化和非白化的 Stylophora 片段在黑暗中以 10⁻¹¹-10⁻⁹ mol O₂(-)mg 蛋白⁻¹ min⁻¹ 的可比速率产生超氧阴离子。在光照下,非白化珊瑚中超氧化物产生速率增加了两倍,但白化珊瑚中没有增加。在黑暗中,培养的 Symbiodinium 以. 的速率产生超氧阴离子。光照发现明显增强了 O₂(-)的产生。NADPH 氧化酶抑制剂二苯基碘氯化物(DPI)强烈抑制珊瑚(以及藻类)的 O₂(-)产生,这可能表明 NADPH 氧化酶参与了这一过程。发现白化和非白化的 Stylophora 具有细胞外 O₂(-)解毒活性,但 Symbiodinium 没有。对 O₂(-)解毒活性进行了部分表征,发现它类似于酶超氧化物歧化酶(SOD)。
结论/意义:发现大量细胞外 O₂(-)产生以及细胞外 O₂(-)解毒活性,可能揭示了共生体与其宿主以及珊瑚与其环境之间的化学相互作用。Symbiodinium 产生超氧阴离子可能意味着带有藻类的珊瑚更容易发生内部 O₂(-)积累,这反过来可能与氧化应激介导的白化有关。