Department of Chemistry, University of Calcutta, 92 A. P. C Road, Kolkata 700 009, India.
Inorg Chem. 2010 Oct 18;49(20):9517-26. doi: 10.1021/ic101209m.
The work in this paper aims to portray a complete structural, magnetic, and theoretical description of two original end-to-end (EE) μ(1,3)-azide-bridged, cyclic tetranuclear Ni(II) clusters, [{Ni(II)(L(1))(μ(1,3)-N(3))(H(2)O)}(4)] (1) and [{Ni(II)(L(2))(μ(1,3)-N(3))(H(2)O)}(4)] (2), where the ligands used to achieve these species, HL(1) and HL(2), are the tridentate Schiff base ligands obtained from [1 + 1] condensations of salicylaldehyde with 1-(2-aminoethyl)-piperidine and 4-(2-aminoethyl)-morpholine, respectively. The title compounds, 1 and 2, crystallize in a monoclinic P2(1) space group. Overall, both species can be described in a similar way; where all Ni(II) centers within each molecule are hexacoordinated and bound to L(1) or L(2) through the phenoxo oxygen, imine nitrogen, and piperidine/morpholine nitrogen atoms of the corresponding ligand. The remaining coordination sites are satisfied by one molecule of H(2)O and two nitrogen atoms from N(3)(-) anions. The latest act as bridges between Ni(II) ions, and eventually, only four azido groups are linked to the same number of Ni(II) centers resulting in the formation of cyclic Ni(II)(4) systems. Interestingly, compounds 1 and 2 are the two sole examples of tetranuclear clusters generated exclusively by EE azide-bridging ligands to date. All the N(azide)-Ni-N(azide) moieties are almost linear in 1 and 2 indicating trans arrangement of the azido ligand. Variable-temperature (2-300 K) magnetic susceptibilities of 1 and 2 have been measured under magnetic fields of 0.04 T (from 2 to 30 K) and 0.7 T (from 30 to 300 K), and magneto-structural correlations have been performed. Despite the presence of both ferromagnetic and antiferromagnetic interactions in both compounds, significant differences have been observed in their magnetic behaviors directly related to the arrangement of the bridging azido ligands. Hence, compound 1 has an overall moderate antiferromagnetic behavior due to the presence of an exchange pathway with an unprecedented Ni-N···N-Ni torsion angle close to 0°, meanwhile complex 2 exhibits a predominant ferromagnetic behavior, with torsion angles between 50 and 90°. Density functional theory calculations have been performed to provide more insight into the magnetic nature of this new family of Ni(II)-azido complexes and also to corroborate the fitting of the data.
本文的工作旨在对两个原始的端到端(EE)μ(1,3)-叠氮桥接、环状四核 Ni(II)配合物[{Ni(II)(L(1))(μ(1,3)-N(3))(H(2)O)}(4)](1)和[{Ni(II)(L(2))(μ(1,3)-N(3))(H(2)O)}(4)](2)进行完整的结构、磁性和理论描述,其中用于实现这些物种的配体 HL(1)和 HL(2)是分别由水杨醛与 1-(2-氨基乙基)-哌啶和 4-(2-氨基乙基)-吗啉[1 + 1]缩合得到的三齿席夫碱配体。标题化合物 1 和 2 在单斜 P2(1)空间群中结晶。总体而言,两种物质可以以相似的方式描述;其中每个分子中的所有 Ni(II)中心均为六配位,并通过相应配体的酚氧基氧、亚胺氮和哌啶/吗啉氮原子与[L(1)]-或[L(2)]-结合。其余的配位位点由一个水分子和两个来自 N(3)-阴离子的氮原子满足。最后,N(3)-阴离子作为 Ni(II)离子之间的桥梁,最终只有四个叠氮基团与相同数量的 Ni(II)中心相连,形成环状 Ni(II)(4)体系。有趣的是,化合物 1 和 2 是迄今为止仅由 EE 叠氮桥联配体生成的四核簇的两个唯一实例。1 和 2 中所有的 N(叠氮)-Ni-N(叠氮)部分几乎呈线性,表明叠氮配体呈反式排列。在磁场为 0.04 T(2-300 K)和 0.7 T(30-300 K)下测量了 1 和 2 的变温(2-300 K)磁化率,并进行了磁结构相关性研究。尽管两种化合物中都存在铁磁和反铁磁相互作用,但它们的磁行为存在显著差异,这直接与桥接叠氮配体的排列有关。因此,由于存在具有前所未有的 Ni-N···N-Ni 扭转角接近 0°的交换途径,化合物 1 表现出中等程度的反铁磁行为,而配合物 2 表现出主要的铁磁行为,扭转角在 50°和 90°之间。进行了密度泛函理论计算,以提供对这种新型 Ni(II)-叠氮配合物磁性性质的更深入了解,并证实数据的拟合。