Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA.
Am J Physiol Cell Physiol. 2010 Dec;299(6):C1335-44. doi: 10.1152/ajpcell.00207.2010. Epub 2010 Sep 22.
A mouse embryonic stem (ES) cell line containing an inducible transgene for the proneural gene Neurog1 has been used to generate glutamatergic neurons at a high efficiency. The present study used in vitro electrophysiology to establish the timeline for acquiring a functional neuronal phenotype in Neurog1-induced cells exhibiting a neuronal morphology. TTX-sensitive action potentials could be evoked from over 80% of the cells after only 4.5 days in vitro (DIV). These cells uniformly showed rapidly adapting responses to current injection, firing one to three action potentials at the onset of the stimulus. In the absence of Neurog1, a limited number of ES cells adopted a neuronal morphology, but these cells displayed slow calcium depolarizations rather than sodium-based spikes. Voltage-gated Na(+), K(+), and Ca(2+) currents were present in nearly all induced cells as early as 4.5 DIV. The voltage-dependent properties of these currents changed little from 4 to 12 DIV with half-activation voltage varying by <10 mV for any current type throughout the culture period. This study demonstrates that forced expression of proneural genes can induce ES cells to quickly acquire a functional neuronal phenotype with mature electrophysiological properties. Transient overexpression of Neurog1 may be used in neural repair strategies that require the rapid induction of functional neurons from pluripotent stem cells.
一种含有可诱导转录基因 Neurog1 的小鼠胚胎干细胞(ES)系已被用于高效生成谷氨酸能神经元。本研究采用体外电生理学方法,在具有神经元形态的Neurog1 诱导细胞中,建立获得功能性神经元表型的时间进程。在体外培养 4.5 天后,超过 80%的细胞可诱发出 TTX 敏感的动作电位。这些细胞在刺激开始时,均匀地表现出快速适应的反应,发射一个到三个动作电位。在没有 Neurog1 的情况下,只有少数 ES 细胞采用神经元形态,但这些细胞显示出缓慢的钙去极化,而不是基于钠的尖峰。在 4.5 天的体外培养时,几乎所有诱导的细胞中都存在电压门控的 Na(+)、K(+)和 Ca(2+)电流。这些电流的电压依赖性在 4 到 12 天的培养过程中变化很小,任何电流类型的半激活电压变化都小于 10 mV。本研究表明,强制表达神经前体细胞基因可以诱导 ES 细胞快速获得具有成熟电生理特性的功能性神经元表型。Neurog1 的瞬时过表达可能用于需要从多能干细胞快速诱导功能性神经元的神经修复策略。