Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Nat Chem. 2010 Oct;2(10):870-9. doi: 10.1038/nchem.749. Epub 2010 Jul 25.
Two [3]catenane 'molecular flasks' have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF)2•+ and radical-cation (TTF•+)2 states inside the 'molecular flasks.' The experimental data, collected in the solid state as well as in solution under ambient conditions, together with supporting quantum mechanical calculations, are consistent with the formation of stabilized paramagnetic mixed-valence dimers, and then diamagnetic radical-cation dimers following subsequent one-electron oxidations of the [3]catenanes.
两个[3]轮烷“分子瓶”被设计用来构建稳定的氧化还原控制的四硫富瓦烯(TTF)二聚体,从而能够详细探测其分光光度和结构性质。[3]轮烷的机械互锁骨架为被包围的 TTF 单元形成稳定二聚体创造了理想的排列和超高局部浓度,这些二聚体与它们离散的氧化态相关联。这些二聚化事件代表了一种亲和力反转,其中电子亲和力的反转取代了传统的 TTF-联吡啶相互作用,这种相互作用被稳定的混合价(TTF)2•+和自由基阳离子(TTF•+)2 状态在“分子瓶”内所超越。在固态以及在环境条件下的溶液中收集的实验数据,以及支持的量子力学计算,与稳定的顺磁混合价二聚体的形成一致,然后是在[3]轮烷的进一步单电子氧化后形成抗磁性自由基阳离子二聚体。