Suppr超能文献

一些新的熵度量,在生物计算中有用的工具。

Some new measures of entropy, useful tools in biocomputing.

出版信息

Adv Exp Med Biol. 2010;680:745-50. doi: 10.1007/978-1-4419-5913-3_83.

Abstract

The basic problem rooted in Information Theory (IT) foundations (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009) is to reconstruct, as closely as possible, the input signal after observing the received output signal.The Shannon information measure is the only possible one in this context, but it must be clear that it is only valid within the more restricted scope of coding problems that C. E. Shannon himself had seen in his lifetime (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948). As pointed out by Alfred Rényi (1961), in his essential paper (Rényi, Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 547-561, 1961) on generalized information measures, for other sorts of problems other quantities may serve just as well as measures of information, or even better. This would be supported either by their operational significance or by a set of natural postulates characterizing them, or preferably by both. Thus, the idea of generalized entropies arises in scientific literature.We analyze here some new measures of Entropy, very useful to be applied on Biocomputing (Ulanowicz and Hannon, Proc R Soc Lond B 232:181-192, 1987; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009).

摘要

信息论(IT)基础中存在一个基本问题(Shannon,Bell Syst Tech J 27:379-423 和 623-656,1948;Volkenstein,Entropy and Information. Series: Progress in Mathematical Physics,2009),即在观察到接收的输出信号后,尽可能地重建输入信号。香农信息测度是这种情况下唯一可能的测度,但必须清楚的是,它仅在 C.E.香农有生之年所看到的更有限的编码问题范围内有效(Shannon,Bell Syst Tech J 27:379-423 和 623-656,1948)。正如阿尔弗雷德·雷尼(Alfred Rényi)在他关于广义信息测度的重要论文(Rényi,Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability,547-561,1961)中指出的那样,对于其他类型的问题,其他量可能同样可以作为信息测度,甚至更好。这要么是因为它们具有操作意义,要么是因为一组描述它们的自然假设,或者最好是两者兼有。因此,广义熵的概念出现在科学文献中。我们在这里分析了一些新的熵测度,它们非常有用,可以应用于生物计算(Ulanowicz 和 Hannon,Proc R Soc Lond B 232:181-192,1987;Volkenstein,Entropy and Information. Series: Progress in Mathematical Physics,2009)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验