Suppr超能文献

三角型和 Kagome 型晶格上 Potts 模型与渗流模型的临界前沿。II. 数值分析。

Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. II. Numerical analysis.

作者信息

Ding Chengxiang, Fu Zhe, Guo Wenan, Wu F Y

机构信息

Physics Department, Beijing Normal University, Beijing 100875, People's Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061111. doi: 10.1103/PhysRevE.81.061111. Epub 2010 Jun 4.

Abstract

In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu's result is exact, and for the kagome-type lattices Wu's expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu's analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 .

摘要

在前一篇论文中,我们中的一位(吴FY)研究了二维晶格的两类一般类型——三角型晶格和 kagome 型晶格上的 Potts 模型以及键渗流和位渗流,并得到了临界边界的封闭形式表达式及其在各种晶格模型中的应用。对于三角型晶格,吴的结果是精确的;对于 kagome 型晶格,吴的表达式是在一个均匀性假设下得到的。本文的目的有两个:第一,吴分析中的一个关键步骤是为各种晶格模型推导依赖于晶格的常数 A、B、C,这个过程可能很繁琐。我们在此使用计算机算法给出这些常数对于子网的推导。第二,通过基于数值转移矩阵计算的有限尺寸标度分析,我们推导出各种模型的临界性质和临界阈值,并评估均匀性假设的准确性。具体来说,我们分析了 q 态 Potts 模型以及 3 - 12 和 kagome 型子网晶格(n×n):(n×n)(n≤4)上的键渗流,对于这些模型,精确解尚不清楚。我们对诸如共形反常和磁关联长度等临界性质的数值确定验证了普适性原理成立。为了校准有限尺寸方法的准确性,我们对已知精确临界边界的模型应用相同的数值分析。数值结果与精确结果的比较表明,我们的数值在有限尺寸分析的误差范围内是正确的,这些误差对应于 7 或 8 位有效数字。这反过来推断均匀性假设确定临界边界的精度达到 5 位小数或更高。最后,我们还得到了 kagome 型子网晶格(1×1):(n×n)(1≤n≤6)上位渗流的精确渗流阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验