Suppr超能文献

Global phase synchronization in an array of time-delay systems.

作者信息

Suresh R, Senthilkumar D V, Lakshmanan M, Kurths J

机构信息

Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016215. doi: 10.1103/PhysRevE.82.016215. Epub 2010 Jul 29.

Abstract

We report the identification of global phase synchronization (GPS) in a linear array of unidirectionally coupled Mackey-Glass time-delay systems exhibiting highly non-phase-coherent chaotic attractors with complex topological structure. In particular, we show that the dynamical organization of all the coupled time-delay systems in the array to form GPS is achieved by sequential synchronization as a function of the coupling strength. Further, the asynchronous ones in the array with respect to the main sequentially synchronized cluster organize themselves to form clusters before they achieve synchronization with the main cluster. We have confirmed these results by estimating instantaneous phases including phase difference, average phase, average frequency, frequency ratio, and their differences from suitably transformed phase coherent attractors after using a nonlinear transformation of the original non-phase-coherent attractors. The results are further corroborated using two other independent approaches based on recurrence analysis and the concept of localized sets from the original non-phase-coherent attractors directly without explicitly introducing the measure of phase.

摘要

相似文献

1
Global phase synchronization in an array of time-delay systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016215. doi: 10.1103/PhysRevE.82.016215. Epub 2010 Jul 29.
2
Transition from phase to generalized synchronization in time-delay systems.
Chaos. 2008 Jun;18(2):023118. doi: 10.1063/1.2911541.
3
Phase synchronization in time-delay systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):035205. doi: 10.1103/PhysRevE.74.035205. Epub 2006 Sep 29.
4
Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016212. doi: 10.1103/PhysRevE.86.016212. Epub 2012 Jul 13.
5
Synchronization of coupled bistable chaotic systems: experimental study.
Philos Trans A Math Phys Eng Sci. 2008 Feb 13;366(1864):459-73. doi: 10.1098/rsta.2007.2103.
6
Noise-enhanced phase synchronization in time-delayed systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026218. doi: 10.1103/PhysRevE.85.026218. Epub 2012 Feb 27.
7
Synchronization of unidirectionally coupled Mackey-Glass analog circuits with frequency bandwidth limitations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016211. doi: 10.1103/PhysRevE.74.016211. Epub 2006 Jul 27.
8
Synchronization of chaotic systems with coexisting attractors.
Phys Rev Lett. 2006 Jun 23;96(24):244102. doi: 10.1103/PhysRevLett.96.244102. Epub 2006 Jun 21.
9
Transition to intermittent chaotic synchronization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036212. doi: 10.1103/PhysRevE.72.036212. Epub 2005 Sep 19.
10
Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026211. doi: 10.1103/PhysRevE.80.026211. Epub 2009 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验