Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Phys Rev Lett. 2010 Jul 16;105(3):037205. doi: 10.1103/PhysRevLett.105.037205.
We theoretically study origins of the ferroelectricity in the multiferroic phases of the rare-earth (R) Mn perovskites, RMnO(3), by constructing a realistic spin model including the spin-phonon coupling, which reproduces the entire experimental phase diagram in the plane of temperature and Mn-O-Mn bond angle for the first time. Surprisingly we reveal a significant contribution of the symmetric (S·S)-type magnetostriction to the ferroelectricity even in a spin-spiral-based multiferroic phase, which can be larger than the usually expected antisymmetric (S×S)-type contribution. This explains well the nontrivial behavior of the electric polarization. We also predict the noncollinear deformation of the E-type spin structure and a wide coexisting regime of the E and spiral states, which resolve several experimental puzzles.
我们通过构建一个包含自旋-声子耦合的现实自旋模型,从理论上研究了稀土(R)锰钙钛矿 RMnO(3) 的多铁相中铁电性的起源,该模型首次重现了整个实验相图,该相图在温度和 Mn-O-Mn 键角的平面上。令人惊讶的是,我们揭示了对称(S·S)-型磁致伸缩对铁电性的显著贡献,即使在基于自旋螺旋的多铁相中,其贡献也可以大于通常预期的反对称(S×S)-型贡献。这很好地解释了电极化的非平凡行为。我们还预测了 E 型自旋结构的非共线变形和 E 态和螺旋态的广泛共存区域,解决了几个实验难题。