PMMH, CNRS, ESPCI ParisTech, Université Paris 6, Université Paris 7, 10, rue Vauquelin, 75231 Paris cedex 05, France.
Phys Rev Lett. 2010 Jul 23;105(4):044502. doi: 10.1103/PhysRevLett.105.044502. Epub 2010 Jul 21.
We investigate both experimentally and theoretically the traffic of particles flowing in microfluidic obstacle networks. We show that the traffic dynamics is a nonlinear process: the particle current does not scale with the particle density even in the dilute limit where no particle collision occurs. We demonstrate that this nonlinear behavior stems from long-range hydrodynamic interactions. Importantly, we also establish that there exists a maximal current above which no stationary particle flow can be sustained. For higher current values, intermittent traffic jams form, thereby inducing the ejection of the particles from the initial path and the subsequent invasion of the network. Eventually, we put our findings in the broader context of the transport processes of driven particles in low dimension.
我们从实验和理论两方面研究了在微流控障碍物网络中流动的粒子的流量。我们表明,即使在没有粒子碰撞的稀相极限下,粒子流也不会与粒子密度成比例。我们证明这种非线性行为源于长程流体动力学相互作用。重要的是,我们还确定了存在一个最大电流,超过该电流就无法维持稳定的粒子流。对于更高的电流值,间歇性交通堵塞会形成,从而导致粒子从初始路径中排出,并随后侵入网络。最终,我们将我们的发现置于低维驱动粒子输运过程的更广泛背景下。