Departament de Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain.
Phys Chem Chem Phys. 2010 Nov 7;12(41):13646-56. doi: 10.1039/c0cp00715c. Epub 2010 Sep 24.
Reactive collisions between n-C(3)H(7)Cl molecules and lithium ions both in their ground electronic state have been studied in the 0.05-7.00 eV center of mass energy range using an octopole radio frequency guided-ion beam apparatus developed in our laboratory and recently modified. At low collision energies, dehydrohalogenation reactions leading to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while on increasing energies C(3)H(7)(+) and C(2)H(3)(+) formation become dominant. Cross section energy dependences in arbitrary units for all these reactions have been measured. Also, ab initio electronic structure calculations at the MP2 level have been performed to obtain information about the potential energy surface on which the reactive processes take place. The reactants' entrance channel leads to the formation of a stable Li-n-C(3)H(7)Cl ion-molecule adduct that, following an intrinsic-reaction-coordinate pathway and surmounting a transition state, isomerizes to Li-i-C(3)H(7)Cl. From this second minimum, dehydrohalogenation reactions for both n-C(3)H(7)Cl and i-C(3)H(7)Cl share a common reaction pathway leading to the same products. All potential barriers explored by reactions always lie below the reactants' energy. The entrance reaction channel Li-n-C(3)H(7)Cl adduct also leads adiabatically to C(3)H(7)(+) formation which, on increasing collision energy generates C(2)H(3)(+)via a unimolecular decomposition. A qualitative interpretation of the experimental results based on our ab initio calculations is also given.
n-C(3)H(7)Cl 分子与锂离子在基态电子态下的反应碰撞在 0.05-7.00 eV 的质心能量范围内进行了研究,使用我们实验室开发的最近经过修改的八极射频引导离子束装置。在低碰撞能量下,导致 Li(C(3)H(6))(+)和 Li(HCl)(+)的脱氢卤化反应是主要的反应通道,而随着能量的增加,C(3)H(7)(+)和 C(2)H(3)(+)的形成变得占主导地位。所有这些反应的任意单位的截面能量依赖性都已被测量。此外,还进行了 MP2 水平的从头算电子结构计算,以获得有关反应发生的势能面的信息。反应物的入口通道导致形成稳定的Li-n-C(3)H(7)Cl离子-分子加合物,该加合物沿着本征反应坐标途径并克服过渡态,异构化为Li-i-C(3)H(7)Cl。从这个第二最小值开始,n-C(3)H(7)Cl 和 i-C(3)H(7)Cl 的脱氢卤化反应共享一个共同的反应途径,导致相同的产物。所有反应探索的势垒总是低于反应物的能量。入口反应通道Li-n-C(3)H(7)Cl加合物也会绝热地导致 C(3)H(7)(+)的形成,随着碰撞能量的增加,C(2)H(3)(+)通过单分子分解生成。根据我们的从头算计算,对实验结果进行了定性解释。