Suppr超能文献

有益突变和普遍上位性的收益递减塑造了铜绿假单胞菌利福平耐药性的适应度景观。

Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.

机构信息

Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.

出版信息

Genetics. 2010 Dec;186(4):1345-54. doi: 10.1534/genetics.110.123083. Epub 2010 Sep 27.

Abstract

Because adaptation depends upon the fixation of novel beneficial mutations, the fitness effects of beneficial mutations that are substituted by selection are key to our understanding of the process of adaptation. In this study, we experimentally investigated the fitness effects of beneficial mutations that are substituted when populations of the pathogenic bacterium Pseudomonas aeruginosa adapt to the antibiotic rifampicin. Specifically, we isolated the first beneficial mutation to be fixed by selection when 96 populations of three different genotypes of P. aeruginosa that vary considerably in fitness in the presence of rifampicin were challenged with adapting to a high dose of this antibiotic. The simple genetics of rifampicin resistance allowed us to determine the genetic basis of adaptation in the majority of our populations. We show that the average fitness effects of fixed beneficial mutations show a simple and clear pattern of diminishing returns, such that selection tends to fix mutations with progressively smaller effects as populations approach a peak on the adaptive landscape. The fitness effects of individual mutations, on the other hand, are highly idiosyncratic across genetic backgrounds, revealing pervasive epistasis. In spite of this complexity of genetic interactions in this system, there is an overall tendency toward diminishing-returns epistasis. We argue that a simple overall pattern of diminishing-returns adaptation emerges, despite pervasive epistasis between beneficial mutations, because many beneficial mutations are available, and while the fitness landscape is rugged at the fine scale, it is smooth and regular when we consider the average over possible routes to adaptation. In the context of antibiotic resistance, these results show that acquiring mutations that confer low levels of antibiotic resistance does not impose any constraint on the ability to evolve high levels of resistance.

摘要

由于适应取决于新有益突变的固定,因此被选择取代的有益突变的适应度效应是我们理解适应过程的关键。在这项研究中,我们通过实验研究了当致病菌铜绿假单胞菌的种群适应抗生素利福平时被选择取代的有益突变的适应度效应。具体来说,我们分离出了在含有利福平的情况下,三种不同基因型的 96 个铜绿假单胞菌种群中,第一个被选择固定的有益突变。利福平抗性的简单遗传使得我们能够确定大多数种群适应这种抗生素高剂量的遗传基础。我们表明,固定有益突变的平均适应度效应呈现出简单而清晰的报酬递减模式,因此随着种群接近适应景观的峰值,选择倾向于固定具有逐渐减小效应的突变。另一方面,单个突变的适应度效应在遗传背景上具有高度的特异性,揭示了普遍的上位性。尽管在这个系统中存在遗传相互作用的复杂性,但仍然存在报酬递减的上位性总体趋势。我们认为,尽管有益突变之间存在普遍的上位性,但仍会出现简单的报酬递减适应整体模式,因为有许多有益突变可用,并且尽管在精细尺度上适应度景观崎岖不平,但当我们考虑适应可能的平均路线时,它是平滑和规则的。在抗生素耐药性的背景下,这些结果表明,获得赋予低水平抗生素耐药性的突变不会对进化高水平耐药性的能力施加任何限制。

相似文献

2
Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
Evolution. 2011 Aug;65(8):2370-9. doi: 10.1111/j.1558-5646.2011.01302.x. Epub 2011 May 10.
4
The cost of multiple drug resistance in Pseudomonas aeruginosa.
J Evol Biol. 2009 May;22(5):997-1003. doi: 10.1111/j.1420-9101.2009.01712.x. Epub 2009 Feb 27.
5
Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
Mol Biol Evol. 2015 Oct;32(10):2675-80. doi: 10.1093/molbev/msv143. Epub 2015 Jun 30.
7
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
Mol Biol Evol. 2013 Aug;30(8):1779-87. doi: 10.1093/molbev/mst096. Epub 2013 May 15.
8
The consistency of beneficial fitness effects of mutations across diverse genetic backgrounds.
PLoS One. 2012;7(8):e43864. doi: 10.1371/journal.pone.0043864. Epub 2012 Aug 24.
9
Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa.
Proc Biol Sci. 2010 Feb 22;277(1681):643-50. doi: 10.1098/rspb.2009.1630. Epub 2009 Nov 4.
10
The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.
PLoS Genet. 2013 Apr;9(4):e1003426. doi: 10.1371/journal.pgen.1003426. Epub 2013 Apr 4.

引用本文的文献

2
From Metagenomes to Functional Expression of Resistance: Gene Diversity in Bacteria from Salmon Farms.
Antibiotics (Basel). 2025 Jan 24;14(2):122. doi: 10.3390/antibiotics14020122.
3
Quantifying the strength of viral fitness trade-offs between hosts: a meta-analysis of pleiotropic fitness effects.
Evol Lett. 2024 Jul 29;8(6):851-865. doi: 10.1093/evlett/qrae038. eCollection 2024 Dec.
4
Extending evolutionary forecasts across bacterial species.
Proc Biol Sci. 2024 Dec;291(2036):20242312. doi: 10.1098/rspb.2024.2312. Epub 2024 Dec 11.
5
Linking molecular mechanisms to their evolutionary consequences: a primer.
Genetics. 2025 Feb 5;229(2). doi: 10.1093/genetics/iyae191.
6
Extreme positive epistasis for fitness in monosomic yeast strains.
Elife. 2024 Oct 17;12:RP87455. doi: 10.7554/eLife.87455.
7
Environment-independent distribution of mutational effects emerges from microscopic epistasis.
Science. 2024 Oct 4;386(6717):87-92. doi: 10.1126/science.adn0753. Epub 2024 Oct 3.
8
Formalizing the law of diminishing returns in metabolic networks using an electrical analogy.
R Soc Open Sci. 2024 Oct 2;11(10):240165. doi: 10.1098/rsos.240165. eCollection 2024 Oct.
9
Dysfunctional β-cell longevity in diabetes relies on energy conservation and positive epistasis.
Life Sci Alliance. 2024 Sep 23;7(12). doi: 10.26508/lsa.202402743. Print 2024 Dec.
10
Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes.
Mol Syst Biol. 2024 Oct;20(10):1109-1133. doi: 10.1038/s44320-024-00059-0. Epub 2024 Aug 22.

本文引用的文献

1
EVOLUTIONARY DYNAMICS OF FITNESS RECOVERY FROM THE DEBILITATING EFFECTS OF MULLER'S RATCHET.
Evolution. 1998 Apr;52(2):309-314. doi: 10.1111/j.1558-5646.1998.tb01633.x.
2
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
5
Antibiotic resistance and its cost: is it possible to reverse resistance?
Nat Rev Microbiol. 2010 Apr;8(4):260-71. doi: 10.1038/nrmicro2319. Epub 2010 Mar 8.
6
The properties of adaptive walks in evolving populations of fungus.
PLoS Biol. 2009 Nov;7(11):e1000250. doi: 10.1371/journal.pbio.1000250. Epub 2009 Nov 24.
7
Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa.
Proc Biol Sci. 2010 Feb 22;277(1681):643-50. doi: 10.1098/rspb.2009.1630. Epub 2009 Nov 4.
8
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
9
Gene amplification and adaptive evolution in bacteria.
Annu Rev Genet. 2009;43:167-95. doi: 10.1146/annurev-genet-102108-134805.
10
Positive epistasis drives the acquisition of multidrug resistance.
PLoS Genet. 2009 Jul;5(7):e1000578. doi: 10.1371/journal.pgen.1000578. Epub 2009 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验