Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Genet Epidemiol. 2010 Nov;34(7):756-68. doi: 10.1002/gepi.20534.
Anticipation, manifested through decreasing age of onset or increased severity in successive generations, has been noted in several genetic diseases. Statistical methods for genetic anticipation range from a simple use of the paired t-test for age of onset restricted to affected parent-child pairs to a recently proposed random effects model which includes extended pedigree data and unaffected family members [Larsen et al., 2009]. A naive use of the paired t-test is biased for the simple reason that age of onset has to be less than the age at ascertainment (interview) for both affected parent and child, and this right truncation effect is more pronounced in children than in parents. In this study, we first review different statistical methods for testing genetic anticipation in affected parent-child pairs that address the issue of bias due to right truncation. Using affected parent-child pair data, we compare the paired t-test with the parametric conditional maximum likelihood approach of Huang and Vieland [1997] and the nonparametric approach of Rabinowitz and Yang [1999] in terms of Type I error and power under various simulation settings and departures from the modeling assumptions. We especially investigate the issue of multiplex ascertainment and its effect on the different methods. We then focus on exploring genetic anticipation in Lynch syndrome and analyze new data on the age of onset in affected parent-child pairs from families seen at the University of Michigan Cancer Genetics clinic with a mutation in one of the three main mismatch repair (MMR) genes. In contrast to the clinic-based population, we re-analyze data on a population-based Lynch syndrome cohort, derived from the Danish HNPCC-register. Both datasets indicate evidence of genetic anticipation in Lynch syndrome. We then expand our review to incorporate recently proposed statistical methods that consider family instead of affected pairs as the sampling unit. These prospective censored regression models offer additional flexibility to incorporate unaffected family members, familial correlation and other covariates into the analysis. An expanded dataset from the Danish HNPCC-register is analyzed by this alternative set of methods.
在几种遗传疾病中,已经注意到在连续几代中出现发病年龄提前或严重程度增加的情况。遗传预期的统计方法范围很广,从简单使用配对 t 检验来限制受影响的父母-子女对的发病年龄,到最近提出的随机效应模型,该模型包括扩展的家系数据和未受影响的家庭成员[Larsen 等人,2009]。简单地使用配对 t 检验会产生偏差,原因很简单,即受影响的父母和孩子的发病年龄都必须小于发病年龄(访谈),这种右截断效应在儿童中比在父母中更为明显。在这项研究中,我们首先回顾了用于检测受影响的父母-子女对中遗传预期的不同统计方法,这些方法解决了由于右截断而产生的偏差问题。使用受影响的父母-子女对数据,我们比较了配对 t 检验与 Huang 和 Vieland [1997]的参数条件最大似然方法和 Rabinowitz 和 Yang [1999]的非参数方法,比较了在各种模拟设置和偏离建模假设下的 I 型错误和功效。我们特别研究了多重确认的问题及其对不同方法的影响。然后,我们专注于探索林奇综合征中的遗传预期,并分析了密歇根大学癌症遗传学诊所中带有三种主要错配修复(MMR)基因之一突变的受影响的父母-子女对的发病年龄的新数据。与基于诊所的人群相比,我们重新分析了基于人群的林奇综合征队列的数据,该队列来自丹麦 HNPCC 登记处。这两个数据集都表明林奇综合征中存在遗传预期的证据。然后,我们扩展了我们的审查范围,纳入了最近提出的统计方法,这些方法将家庭而不是受影响的对作为抽样单位。这些前瞻性截尾回归模型为将未受影响的家庭成员、家族相关性和其他协变量纳入分析提供了更多的灵活性。通过这种替代方法分析了丹麦 HNPCC 登记处的扩展数据集。