Joshi Shantanu H, Cabeen Ryan P, Sun Bo, Joshi Anand A, Gutman Boris, Zamanyan Alen, Chakrapani Shruthi, Dinov Ivo, Woods Roger P, Toga Arthur W
Laboratory of Neuro Imaging, University of California, Los Angeles CA 90095, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):357-66. doi: 10.1007/978-3-642-15705-9_44.
We present a geometric approach for constructing shape atlases of sulcal curves on the human cortex. Sulci and gyri are represented as continuous open curves in R3, and their shapes are studied as elements of an infinite-dimensional sphere. This shape manifold has some nice properties--it is equipped with a Riemannian L2 metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal mapping is achieved by computing geodesics in the quotient space of shapes modulo rigid rotations and reparameterizations. The resulting sulcal shape atlas is shown to preserve important local geometry inherently present in the sample population. This is demonstrated in our experimental results for deep brain sulci, where we integrate the elastic shape model into surface registration framework for a population of 69 healthy young adult subjects.
我们提出了一种用于构建人类大脑皮层沟回曲线形状图谱的几何方法。脑沟和脑回被表示为三维空间中的连续开放曲线,其形状作为无限维球体的元素进行研究。这种形状流形具有一些良好的特性——它在切空间上配备了黎曼L2度量,并便于进行计算分析以及脑沟形状之间的对应。通过在形状商空间中计算测地线来实现脑沟映射,该商空间是在刚体旋转和重新参数化的情况下得到的。所得到的脑沟形状图谱被证明能够固有地保留样本群体中重要的局部几何特征。这在我们对深部脑沟的实验结果中得到了证明,在该实验中,我们将弹性形状模型集成到针对69名健康年轻成年受试者群体的表面配准框架中。