Wachinger Christian, Yigitsoy Mehmet, Navab Nassir
Computer Aided Medical Procedures (CAMP), TUM, Munich, Germany.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):26-33. doi: 10.1007/978-3-642-15745-5_4.
Breathing motion leads to a significant displacement and deformation of organs in the abdominal region. This makes the detection of the breathing phase for numerous applications necessary. We propose a new, purely image-based respiratory gating method for ultrasound. Further, we use this technique to provide a solution for breathing affected 4D ultrasound acquisitions with a wobbler probe. We achieve the gating with Laplacian eigenmaps, a manifold learning technique, to determine the low-dimensional manifold embedded in the high-dimensional image space. Since Laplacian eigenmaps assign each ultrasound frame a coordinate in low-dimensional space by respecting the neighborhood relationship, they are well suited for analyzing the breathing cycle. For the 4D application, we perform the manifold learning for each angle, and consecutively, align all the local curves and perform a curve fitting to achieve a globally consistent breathing signal. We performed the image-based gating on several 2D and 3D ultrasound datasets over time, and quantified its very good performance by comparing it to measurements from an external gating system.
呼吸运动会导致腹部器官发生显著的位移和变形。这使得在众多应用中检测呼吸阶段成为必要。我们提出了一种全新的、基于图像的超声呼吸门控方法。此外,我们使用该技术为使用摆动探头的受呼吸影响的4D超声采集提供解决方案。我们利用拉普拉斯特征映射(一种流形学习技术)实现门控,以确定嵌入在高维图像空间中的低维流形。由于拉普拉斯特征映射通过考虑邻域关系为每个超声帧在低维空间中分配一个坐标,因此它们非常适合分析呼吸周期。对于4D应用,我们针对每个角度执行流形学习,然后依次对齐所有局部曲线并进行曲线拟合,以获得全局一致的呼吸信号。我们随时间在多个2D和3D超声数据集上进行了基于图像的门控,并通过将其与外部门控系统的测量结果进行比较来量化其非常好的性能。