Suppr超能文献

一种用于在电子内镜诊断训练系统中设置难度等级的图像检索方法。

An image retrieval approach to setup difficulty levels in training systems for endomicroscopy diagnosis.

作者信息

André Barbara, Vercauteren Tom, Buchner Anna M, Shahid Muhammad Waseem, Wallace Michael B, Ayache Nicholas

机构信息

Mauna Kea Technologies, Paris.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):480-7. doi: 10.1007/978-3-642-15745-5_59.

Abstract

Learning medical image interpretation is an evolutive process that requires modular training systems, from non-expert to expert users. Our study aims at developing such a system for endomicroscopy diagnosis. It uses a difficulty predictor to try and shorten the physician learning curve. As the understanding of video diagnosis is driven by visual similarities, we propose a content-based video retrieval approach to estimate the level of interpretation difficulty. The performance of our retrieval method is compared with several state of the art methods, and its genericity is demonstrated with two different clinical databases, on the Barrett's Esophagus and on colonic polyps. From our retrieval results, we learn a difficulty predictor against a ground truth given by the percentage of false diagnoses among several physicians. Our experiments show that, although our datasets are not large enough to test for statistical significance, there is a noticeable relationship between our retrieval-based difficulty estimation and the difficulty experienced by the physicians.

摘要

学习医学图像解读是一个渐进的过程,需要从非专业用户到专业用户的模块化训练系统。我们的研究旨在开发这样一个用于内镜诊断的系统。它使用一个难度预测器来尝试缩短医生的学习曲线。由于对视频诊断的理解是由视觉相似性驱动的,我们提出一种基于内容的视频检索方法来估计解读难度水平。我们将检索方法的性能与几种现有技术方法进行比较,并通过两个不同的临床数据库(关于巴雷特食管和结肠息肉)证明了其通用性。从我们的检索结果中,我们根据几位医生误诊百分比给出的真实情况学习一个难度预测器。我们的实验表明,尽管我们的数据集不够大,无法进行统计显著性测试,但我们基于检索的难度估计与医生所经历的难度之间存在明显的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验