Zouhar Alexander, Baloch Sajjad, Tsin Yanghai, Fang Tong, Fuchs Siegfried
Siemens Corporate Research, Inc., Princeton, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):113-20. doi: 10.1007/978-3-642-15711-0_15.
We address the problem of 3-D Mesh segmentation for categories of objects with known part structure. Part labels are derived from a semantic interpretation of non-overlapping subsurfaces. Our approach models the label distribution using a Conditional Random Field (CRF) that imposes constraints on the relative spatial arrangement of neighboring labels, thereby ensuring semantic consistency. To this end, each label variable is associated with a rich shape descriptor that is intrinsic to the surface. Randomized decision trees and cross validation are employed for learning the model, which is eventually applied using graph cuts. The method is flexible enough for segmenting even geometrically less structured regions and is robust to local and global shape variations.
我们解决了具有已知部件结构的物体类别的三维网格分割问题。部件标签源自对非重叠子表面的语义解释。我们的方法使用条件随机场(CRF)对标签分布进行建模,该条件随机场对相邻标签的相对空间排列施加约束,从而确保语义一致性。为此,每个标签变量都与一个表面固有的丰富形状描述符相关联。使用随机决策树和交叉验证来学习模型,最终使用图割来应用该模型。该方法足够灵活,甚至可以分割几何结构较少的区域,并且对局部和全局形状变化具有鲁棒性。