Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
J Colloid Interface Sci. 2010 Dec 15;352(2):549-57. doi: 10.1016/j.jcis.2010.09.005. Epub 2010 Sep 15.
This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer.
本文解释了蒸气环境中粗糙度毛细力对蒸气压的依赖性的起源。除非固体的表面能足够低且不利于蒸气吸附,否则在环境条件下,固体表面上很容易形成分子吸附层。然后,在固体凸起接触周围形成的毛细弯月面应该与吸附层处于平衡状态,而不是与裸露的固体表面处于平衡状态。我们将蒸气吸附等温线纳入到杨-拉普拉斯方程的解中,开发了一个理论模型。对两种接触几何形状——球-平面和锥-平面——进行了建模。计算结果表明,只有当考虑固体表面上蒸气的吸附等温线时,才能解释实验观察到的强蒸气压依赖性。较大的相对分压依赖性主要来自于由于吸附层的存在导致弯月面尺寸的变化。