Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama 226-8502, Japan.
J Chem Phys. 2010 Sep 28;133(12):124505. doi: 10.1063/1.3481099.
Dynamical heterogeneity is a key feature to characterize both acceleration and slowing down of the dynamics in interacting disordered materials. In the present work, the heterogeneous ion dynamics in both ionically conducting glass and in room temperature ionic liquids are characterized by the combination of the concepts of Lévy distribution and multifractality. Molecular dynamics simulation data of both systems are analyzed to obtain the fractional power law of the k-dependence of the dynamics, which implies the Lévy distribution of length scale. The multifractality of the motion and structures makes the system more complex. Both contributions in the dynamics become separable by using g(k,t) derived from the intermediate scattering function, F(s)(k,t). When the Lévy index obtained from F(s)(k,t) is combined with fractal dimension analysis of random walks and multifractal analysis, all the spatial exponent controlling both fast and slow dynamics are clarified. This analysis is generally applicable to other complex interacting systems and is deemed beneficial for understanding their dynamics.
动态非均匀性是描述相互作用的无序材料中动力学加速和减速的关键特征。在本工作中,通过 Lévy 分布和多重分形的概念组合,对离子传导玻璃和室温离子液体中的离子动态异质性进行了表征。对这两个体系的分子动力学模拟数据进行了分析,得到了动力学对 k 的分数幂律,这意味着长度尺度的 Lévy 分布。运动和结构的多重分形使得体系更加复杂。通过使用从中子散射函数 F(s)(k,t) 导出的 g(k,t),可以将动力学中的这两个贡献分开。当从 F(s)(k,t) 获得的 Lévy 指数与随机行走的分形维数分析和多重分形分析相结合时,阐明了控制快、慢动力学的所有空间指数。该分析通常适用于其他复杂的相互作用体系,并有助于理解它们的动力学。