Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA.
Chaos. 2010 Sep;20(3):037106. doi: 10.1063/1.3486800.
Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g., a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offs between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty two-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.
随机性是具有纳米结构的复杂系统的固有特征。在这样的系统中,信息由小的元素集合表示(例如,量子点上的几个电子),这些元素的数量的微小变化可能导致信息的巨大不确定性。不幸的是,人们对如何在这种固有的嘈杂环境中工作,以将稳健的功能设计到复杂的纳米级系统中知之甚少。在这里,我们将生物细胞视为一个有趣的模型系统,在这个系统中,进化在波动和功能之间进行了权衡,特别是我们研究了出芽酵母(酿酒酵母)基因表达中的随机和确定性响应之间的关系和权衡。我们发现了控制表达的随机和确定性成分的基因调控安排,并表明那些已经进化为以最确定的方式对刺激(压力)做出反应的基因在没有刺激的情况下表现出最大的噪声。我们表明,这种关系与基因表达的突发二态模型一致,并证明当最佳基因表达水平存在最大不确定性时,这种调节模式会导致基因表达中最大的不确定性。