Suppr超能文献

添加氮对微生物燃料电池阳极性能的影响。

Effect of nitrogen addition on the performance of microbial fuel cell anodes.

机构信息

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States.

出版信息

Bioresour Technol. 2011 Jan;102(1):395-8. doi: 10.1016/j.biortech.2010.05.063. Epub 2010 Jun 17.

Abstract

Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938 mW/m(2). This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707 mW/m(2). These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface.

摘要

碳纤维布阳极经 4(N,N-二甲基氨基)苯重氮四氟硼酸盐修饰,以增加阳极表面的含氮官能团,从而检验通过可控修饰阳极表面化学性质是否可以提高微生物燃料电池(MFC)的性能。基于 XPS 测量的氮/碳比为 0.7,具有最低功能化程度的阳极实现了 938 mW/m²的最高功率密度。该功率密度比未经处理的阳极高 24%,与先前证明可提高功率的氨气处理获得的功率相似。然而,将氮/碳比增加到 3.8 会将功率密度降低到 707 mW/m²。这些结果表明,碳纤维布材料上少量的氮官能化足以增强 MFC 的性能,这可能是因为促进了细菌在表面的附着,而不会对微生物的生存能力或电子向表面的转移产生不利影响。

相似文献

1
Effect of nitrogen addition on the performance of microbial fuel cell anodes.
Bioresour Technol. 2011 Jan;102(1):395-8. doi: 10.1016/j.biortech.2010.05.063. Epub 2010 Jun 17.
3
Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.
Appl Microbiol Biotechnol. 2011 Mar;89(5):1629-35. doi: 10.1007/s00253-010-3013-5. Epub 2010 Dec 1.
4
Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
Environ Microbiol. 2008 Oct;10(10):2505-14. doi: 10.1111/j.1462-2920.2008.01675.x. Epub 2008 Jun 28.
5
Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
Biosens Bioelectron. 2011 Oct 15;28(1):181-8. doi: 10.1016/j.bios.2011.07.017. Epub 2011 Jul 19.
6
Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
Bioresour Technol. 2011 Jan;102(1):355-60. doi: 10.1016/j.biortech.2010.04.091. Epub 2010 May 23.
9
Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell.
Bioresour Technol. 2011 Jan;102(1):411-5. doi: 10.1016/j.biortech.2010.05.059. Epub 2010 Jun 17.
10
Development of a solar-powered microbial fuel cell.
J Appl Microbiol. 2008 Mar;104(3):640-50. doi: 10.1111/j.1365-2672.2007.03580.x. Epub 2007 Oct 9.

引用本文的文献

1
Factors affecting the efficiency of a bioelectrochemical system: a review.
RSC Adv. 2019 Jun 25;9(34):19748-19761. doi: 10.1039/c9ra03605a. eCollection 2019 Jun 19.
2
Enhanced Bio-Electrochemical Reduction of Carbon Dioxide by Using Neutral Red as a Redox Mediator.
Chembiochem. 2019 May 2;20(9):1196-1205. doi: 10.1002/cbic.201800784. Epub 2019 Mar 12.
3
Microbial fuel cells: From fundamentals to applications. A review.
J Power Sources. 2017 Jul 15;356:225-244. doi: 10.1016/j.jpowsour.2017.03.109.
4
Influence of anode surface chemistry on microbial fuel cell operation.
Bioelectrochemistry. 2015 Dec;106(Pt A):141-9. doi: 10.1016/j.bioelechem.2015.05.002. Epub 2015 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验