Suppr超能文献

基于可变形栅格的可变长度开轮廓跟踪。

Variable length open contour tracking using a deformable trellis.

机构信息

Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA.

出版信息

IEEE Trans Image Process. 2011 Apr;20(4):1023-35. doi: 10.1109/TIP.2010.2081680. Epub 2010 Sep 30.

Abstract

This paper focuses on contour tracking, an important problem in computer vision, and specifically on open contours that often directly represent a curvilinear object. Compelling applications are found in the field of bioimage analysis where blood vessels, dendrites, and various other biological structures are tracked over time. General open contour tracking, and biological images in particular, pose major challenges including scene clutter with similar structures (e.g., in the cell), and time varying contour length due to natural growth and shortening phenomena, which have not been adequately answered by earlier approaches based on closed and fixed end-point contours. We propose a model-based estimation algorithm to track open contours of time-varying length, which is robust to neighborhood clutter with similar structures. The method employs a deformable trellis in conjunction with a probabilistic (hidden Markov) model to estimate contour position, deformation, growth and shortening. It generates a maximum a posteriori estimate given observations in the current frame and prior contour information from previous frames. Experimental results on synthetic and real-world data demonstrate the effectiveness and performance gains of the proposed algorithm.

摘要

本文聚焦于轮廓跟踪这一计算机视觉中的重要问题,特别是针对那些常直接表示曲线物体的开放轮廓。在生物图像分析领域,有许多引人注目的应用,其中包括对血管、树突以及各种其他生物结构进行随时间的跟踪。一般的开放轮廓跟踪,特别是生物图像,面临着重大挑战,包括具有相似结构的场景杂乱(例如,在细胞中),以及由于自然生长和缩短现象导致的轮廓长度随时间变化,这些问题在早期基于封闭和固定端点轮廓的方法中并未得到充分解决。我们提出了一种基于模型的估计算法,用于跟踪具有时变长度的开放轮廓,该算法对具有相似结构的邻域杂乱具有鲁棒性。该方法采用可变形的格栅,并结合概率(隐马尔可夫)模型来估计轮廓位置、变形、增长和缩短。它根据当前帧中的观测结果和前一帧中的先前轮廓信息生成最大后验估计。在合成和真实世界数据上的实验结果证明了所提出算法的有效性和性能优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验