Suppr超能文献

Effect of tube ovalling on pressure wave propagation speed.

作者信息

Anderson A, Johnson G R

机构信息

Department of Mechanical, Materials and Manufacturing Engineering, University of Newcastle upon Tyne.

出版信息

Proc Inst Mech Eng H. 1990;204(4):245-51. doi: 10.1243/PIME_PROC_1990_204_263_02.

Abstract

For physiological and other flows it is often assumed that the pressure pulse wave speed is given by the classic Moens-Korteweg expression and this may be used, for example, to assist in the determination of in vivo blood vessel wall incremental Young's modulus. A number of physical factors affecting the value of this wave speed have been reviewed in the literature, but the effect of slight ovalling of the tube cross-section is rarely mentioned. The analysis for a tube of elliptic cross-section shows that even a very small degree of ovalling can cause quite substantial reductions in Young mode wave propagation velocities compared with the classic Moens-Korteweg expression. Bending-induced changes in cross-section shape with internal pressure increase the apparent elasticity of the tube wall. Experimental confirmation is provided by waterhammer wave speed measurements in a copper tube that has been ovalled by coiling. Even though the Young mode is not dominant in this case, as it would be for a physiological case, the measured wave speed is quite clearly less than the Moens-Korteweg theory and it can be shown that the small degree of measured tube ovality explains this.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验