Suppr超能文献

比较不同化学计量学和分析方法在预测药物粉末粒度分布中的应用。

Comparison of different chemometric and analytical methods for the prediction of particle size distribution in pharmaceutical powders.

机构信息

REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Aníbal Cunha, no. 164, 4099-030 Porto, Portugal.

出版信息

Anal Bioanal Chem. 2011 Feb;399(6):2137-47. doi: 10.1007/s00216-010-4230-6. Epub 2010 Oct 5.

Abstract

This work compares the estimation of the particle size distribution of a pharmaceutical powder using near-infrared spectroscopy (NIRS), powder flowability properties, and components concentration. The estimations were made by considering the former data blocks separately and together using a multi-block approach. The powders were based on a formulation of paracetamol as the pharmaceutical active ingredient. The reference method used to determine particle size distribution was sieving. Partial least squares methods were used to estimate the multivariate regression models, and the results were compared in terms of figures of merit. It was shown that the partial least squares methods gave similar prediction errors. Regarding the data blocks used, the NIRS block was proven the most advantageous to estimate the particle size distribution. The prediction error of the NIRS block was similar to the other data blocks with additional advantages such as less generalization problems and the possibility of its use to predict additional physical and chemical properties with an improvement to analysis time. The multi-block approach produced the worst results but nevertheless allowed a deeper understanding of the individual contributions of the data blocks in the prediction of the particle size distribution.

摘要

本工作比较了使用近红外光谱(NIRS)、粉末流动性特性和成分浓度来估计药物粉末的粒度分布。通过分别和一起考虑前数据块,使用多块方法进行了估计。这些粉末基于扑热息痛作为药物活性成分的配方。用于确定粒度分布的参考方法是筛分。使用偏最小二乘法(PLS)方法估计多元回归模型,并根据优劣指标进行比较。结果表明,PLS 方法给出了相似的预测误差。关于使用的数据块,NIRS 块被证明最有利于估计粒度分布。NIRS 块的预测误差与其他数据块相似,具有更少的泛化问题的额外优势,并且有可能用于预测其他物理和化学性质,同时缩短分析时间。多块方法的结果最差,但仍然允许更深入地了解数据块在预测粒度分布中的单独贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验