Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biochemistry. 2010 Nov 9;49(44):9630-7. doi: 10.1021/bi1013672.
We recently reported the identification by in vitro selection of 10MD5, a deoxyribozyme that requires both Mn2+ and Zn2+ to hydrolyze a single-stranded DNA substrate with formation of 5′-phosphate and 3′-hydroxyl termini. DNA cleavage by 10MD5 proceeds with kobs=2.7 h(−1) and rate enhancement of 10(12) over the uncatalyzed P−O hydrolysis reaction. 10MD5 has a very sharp pH optimum near 7.5, with greatly reduced DNA cleavage rate and yield when the pH is changed by only 0.1 unit in either direction. Here we have optimized 10MD5 by reselection (in vitro evolution), leading to variants with broader pH tolerance, which is important for practical DNA cleavage applications. Because of the extensive Watson−Crick complementarity between deoxyribozyme and substrate, the parent 10MD5 is inherently sequence-specific; i.e., it is able to cleave one DNA substrate sequence in preference to other sequences. 10MD5 is also site-specific because only one phosphodiester bond within the DNA substrate is cleaved, although here we show that intentionally creating Watson−Crick mismatches near the cleavage site relaxes the site specificity. Newly evolved 10MD5 variants such as 9NL27 are also sequence-specific. However, the 9NL27 site specificity is relaxed for some substrate sequences even when full Watson−Crick complementarity is maintained, corresponding to a functional compromise between pH tolerance and site specificity. The site specificity of 9NL27 may be restored by expanding its “recognition site” from ATGT (as for 10MD5) to ATGTT or larger, i.e., by considering 9NL27 to have reduced substrate sequence tolerance relative to 10MD5. These findings provide fundamental insights into the interplay among key deoxyribozyme characteristics of tolerance and selectivity, with implications for ongoing development of practical DNA-catalyzed DNA hydrolysis.
我们最近通过体外选择鉴定了 10MD5,这是一种脱氧核酶,需要 Mn2+和 Zn2+才能水解单链 DNA 底物,形成 5′-磷酸和 3′-羟基末端。10MD5 的 DNA 切割速度常数 kobs=2.7 h(−1),比无催化剂的 P−O 水解反应的速度提高了 10(12)倍。10MD5 的 pH 最适范围非常狭窄,接近 7.5,当 pH 在任一侧仅改变 0.1 个单位时,DNA 切割速率和产率都会大大降低。在这里,我们通过重新选择(体外进化)对 10MD5 进行了优化,得到了具有更宽 pH 耐受性的变体,这对于实际的 DNA 切割应用非常重要。由于脱氧核酶和底物之间存在广泛的 Watson−Crick 互补性,原始的 10MD5 具有固有序列特异性;即,它能够优先切割一种 DNA 底物序列,而不是其他序列。10MD5 也是位点特异性的,因为只有 DNA 底物中的一个磷酸二酯键被切割,尽管我们在这里表明,在切割位点附近有意引入 Watson−Crick 错配会放宽位点特异性。新进化的 10MD5 变体,如 9NL27,也是序列特异性的。然而,即使保持完全的 Watson−Crick 互补性,9NL27 的某些底物序列的位点特异性也会放宽,这对应于 pH 耐受性和位点特异性之间的功能权衡。通过将其“识别位点”从 ATGT(如 10MD5)扩展到 ATGTT 或更大,例如,将 9NL27 视为相对于 10MD5 具有降低的底物序列耐受性,9NL27 的位点特异性可以恢复。这些发现为耐受性和选择性等关键脱氧核酶特性之间的相互作用提供了基本的见解,并对正在进行的实用 DNA 催化 DNA 水解的发展具有重要意义。