Suppr超能文献

模糊自适应最小二乘法及其在定量构效关系中的应用。

Fuzzy adaptive least squares and its use in quantitative structure-activity relationships.

作者信息

Moriguchi I, Hirono S, Liu Q A, Matsushita Y, Nakagawa T

机构信息

School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.

出版信息

Chem Pharm Bull (Tokyo). 1990 Dec;38(12):3373-9. doi: 10.1248/cpb.38.3373.

Abstract

Fuzzy adaptive least squares (FALS), a pattern recognition method designed to correlate molecular structure with activity rating, has been developed. A novel feature of FALS is that the degree to which each sample belongs to an activity class is given using a membership function. The algorithm involves an iterative modification of forcing factors to maximize the sum of the membership function values over all samples. This paper first describes the method and calculation procedure of FALS89 (1989 version of FALS), and then shows its application to the correlation of structure with a potency rating of anticarcinogenic mitomycin derivatives and arginine-vasopressin antagonists. FALS89 applied to these samples showed considerably high reliability in both recognition and leave-one-out prediction.

摘要

模糊自适应最小二乘法(FALS)是一种用于关联分子结构与活性评级的模式识别方法,现已开发出来。FALS的一个新特点是,使用隶属函数给出每个样本属于某个活性类别的程度。该算法涉及对强制因子进行迭代修正,以使所有样本的隶属函数值之和最大化。本文首先描述了FALS89(FALS的1989版)的方法和计算过程,然后展示了其在抗癌丝裂霉素衍生物和精氨酸加压素拮抗剂的结构与效价评级关联中的应用。应用于这些样本的FALS89在识别和留一法预测中均显示出相当高的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验