Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States.
Inorg Chem. 2010 Nov 1;49(21):9809-22. doi: 10.1021/ic101124q.
Reactions of hydride complexes of ruthenium(II) with hydride acceptors have been examined for Ru(terpy)(bpy)H(+), Ru(terpy)(dmb)H(+), and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) in aqueous media at 25 °C (terpy = 2,2';6',2''-terpyridine, bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine). The acceptors include CO(2), CO, CH(2)O, and H(3)O(+). CO reacts with Ru(terpy)(dmb)H(+) with a rate constant of 1.2 (0.2) × 10(1) M(-1) s(-1), but for Ru(η(6)-C(6)Me(6))(bpy)(H)(+), the reaction was very slow, k ≤ 0.1 M(-1) s(-1). Ru(terpy)(bpy)H(+) and Ru(η(6)-C(6)Me(6))(bpy)(H)(+) react with CH(2)O with rate constants of (6 ± 4) × 10(6) and 1.1 × 10(3) M(-1) s(-1), respectively. The reaction of Ru(η(6)-C(6)Me(6))(bpy)(H)(+) with acid exhibits straightforward, second-order kinetics, with the rate proportional to [Ru(η(6)-C(6)Me(6))(bpy)(H)(+)] and [H(3)O(+)] and k = 2.2 × 10(1) M(-1) s(-1) (μ = 0.1 M, Na(2)SO(4) medium). However, for the case of Ru(terpy)(bpy)H(+), the protonation step is very rapid, and only the formation of the product Ru(terpy)(bpy)(H(2)O)(2+) (presumably via a dihydrogen or dihydride complex) is observed with a k(obs) of ca. 4 s(-1). The hydricities of HCO(2)(-), HCO(-), and H(3)CO(-) in water are estimated as +1.48, -0.76, and +1.57 eV/molecule (+34, -17.5, +36 kcal/mol), respectively. Theoretical studies of the reactions with CO(2) reveal a "product-like" transition state with short C-H and long M-H distances. (Reactant) Ru-H stretched 0.68 Å; (product) C-H stretched only 0.04 Å. The role of water solvent was explored by including one, two, or three water molecules in the calculation.
钌(II)的氢化物配合物与氢化物受体的反应已经在 25°C 的水溶液中对 Ru(terpy)(bpy)H(+)、Ru(terpy)(dmb)H(+)和 Ru(η(6)-C(6)Me(6))(bpy)(H)(+)进行了研究(terpy = 2,2';6',2''-三联吡啶,bpy = 2,2'-联吡啶,dmb = 4,4'-二甲基-2,2'-联吡啶)。受体包括 CO(2)、CO、CH(2)O 和 H(3)O(+)。CO 与 Ru(terpy)(dmb)H(+)的反应速率常数为 1.2(0.2)×10(1)M(-1)s(-1),但对于 Ru(η(6)-C(6)Me(6))(bpy)(H)(+),反应非常缓慢,k ≤ 0.1 M(-1)s(-1)。Ru(terpy)(bpy)H(+)和 Ru(η(6)-C(6)Me(6))(bpy)(H)(+)与 CH(2)O 的反应速率常数分别为(6±4)×10(6)和 1.1×10(3)M(-1)s(-1)。Ru(η(6)-C(6)Me(6))(bpy)(H)(+)与酸的反应表现出直截了当的二级动力学,反应速率与[Ru(η(6)-C(6)Me(6))(bpy)(H)(+)]和[H(3)O(+)]成正比,k = 2.2×10(1)M(-1)s(-1)(μ = 0.1 M,Na(2)SO(4)介质)。然而,对于 Ru(terpy)(bpy)H(+)的情况,质子化步骤非常迅速,只能观察到产物 Ru(terpy)(bpy)(H(2)O)(2+)(推测通过二氢或双氢化物配合物)的形成,k(obs)约为 4 s(-1)。HCO(2)(-)、HCO(-)和 H(3)CO(-)在水中的氢含量分别估计为+1.48、-0.76 和+1.57 eV/分子(+34、-17.5、+36 kcal/mol)。与 CO(2)反应的理论研究揭示了具有短 C-H 和长 M-H 距离的“产物样”过渡态。(反应物)Ru-H 拉伸 0.68 Å;(产物)C-H 拉伸仅 0.04 Å。通过在计算中包含一个、两个或三个水分子来探索水溶剂的作用。