缝隙连接蛋白半通道在海马锥体细胞缺氧去极化中的作用。

The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells.

机构信息

Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

Brain. 2010 Dec;133(Pt 12):3755-63. doi: 10.1093/brain/awq284. Epub 2010 Oct 12.

Abstract

Neuronal gap junctional hemichannels, composed of pannexin-1 subunits, have been suggested to play a crucial role in epilepsy and brain ischaemia. After a few minutes of anoxia or ischaemia, neurons in brain slices show a rapid depolarization to ∼-20 mV, called the anoxic depolarization. Glutamate receptor blockers can prevent the anoxic depolarization, suggesting that it is produced by a cation influx through glutamate-gated channels. However, in isolated hippocampal pyramidal cells, simulated ischaemia evokes a large inward current and an increase in permeability to large molecules, mediated by the opening of pannexin-1 hemichannels. N-methyl-d-aspartate is also reported to open these hemichannels, suggesting that the activation of N-methyl-d-aspartate receptors, which occurs when glutamate is released in ischaemia, might cause the anoxic depolarization by evoking a secondary ion flux through pannexin-1 hemichannels. We tested the contribution of pannexin hemichannels to the anoxic depolarization in CA1 pyramidal cells in the more physiological environment of hippocampal slices. Three independent inhibitors of hemichannels-carbenoxolone, lanthanum and mefloquine-had no significant effect on the current generating the anoxic depolarization, while a cocktail of glutamate and gamma-aminobutyric acid class A receptor blockers abolished it. We conclude that pannexin hemichannels do not generate the large inward current that underlies the anoxic depolarization. Glutamate receptor channels remain the main candidate for generating the large inward current that produces the anoxic depolarization.

摘要

神经元缝隙连接半通道由连接蛋白-1 亚基组成,被认为在癫痫和脑缺血中发挥关键作用。在缺氧或缺血几分钟后,脑切片中的神经元会迅速去极化至约-20mV,称为缺氧去极化。谷氨酸受体阻滞剂可阻止缺氧去极化,表明其是通过谷氨酸门控通道的阳离子内流产生的。然而,在分离的海马锥体细胞中,模拟缺血会引发大的内向电流和对大分子通透性的增加,这是由连接蛋白-1 半通道的开放介导的。据报道,N-甲基-D-天冬氨酸也可打开这些半通道,这表明在缺血时谷氨酸释放时激活 N-甲基-D-天冬氨酸受体可能通过引发通过连接蛋白-1 半通道的二次离子流引起缺氧去极化。我们在海马切片中更生理的环境中测试了半通道对 CA1 锥体细胞缺氧去极化的贡献。三种独立的半通道抑制剂——白杨酮、镧和甲氟喹——对产生缺氧去极化的电流没有显著影响,而谷氨酸和 GABA A 受体阻滞剂混合物则可使其完全阻断。我们得出结论,连接蛋白半通道不会产生缺氧去极化所必需的大内向电流。谷氨酸受体通道仍然是产生缺氧去极化大内向电流的主要候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8088/2995884/b6a09ef6727e/awq284f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索