Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan.
Inorg Chem. 2010 Nov 15;49(22):10400-8. doi: 10.1021/ic101184y. Epub 2010 Oct 13.
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), Fe(THFPrP)Py(2), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously (Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209). Although the highly ruffled porphyrin core expected for this complex contributes to the stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state, the strongly electron withdrawing C(3)F(7) groups at the meso positions should stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Thus, we have reexamined the electronic structure of Fe(THFPrP)Py(2) by means of (1)H NMR, (19)F NMR, and electron paramagnetic resonance (EPR) spectroscopy. The CD(2)Cl(2) solution of Fe(THFPrP)Py(2) shows the pyrrole-H signal at -10.25 ppm (298 K) in (1)H NMR, the CF(2)(α) signal at -74.6 ppm (298 K) in (19)F NMR, and the large g(max) type signal at g = 3.16 (4.2 K) in the EPR. Thus, contrary to the previous report, the complex is unambiguously shown to adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state. Comparison of the spectroscopic data of a series of Fe(THFPrP)L(2) with those of the corresponding meso-tetrapropylporphyrin complexes Fe(TPrP)L(2) with various axial ligands (L) has shown that the meso-C(3)F(7) groups stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Therefore, it is clear that the less common (d(xz), d(yz))(4)(d(xy))(1) ground state can be stabilized by the three major factors: (i) axial ligand with low-lying π* orbitals, (ii) ruffled porphyrin ring, and (iii) electron donating substituent at the meso position.
双(吡啶)[meso-四(全氟丙基)卟啉基]铁(III),[Fe(THFPrP)Py(2)]+,被报道为低自旋配合物,采用最纯的(d(xz), d(yz))(4)(d(xy))(1)基态,其中铁 d(xy)和 d(π)(d(xz), d(yz))轨道之间的能隙大于以前报道的任何其他配合物的相应能隙(Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209)。尽管该配合物预期具有高度褶皱的卟啉核,有助于稳定(d(xz), d(yz))(4)(d(xy))(1)基态,但在 meso 位置的强吸电子 C(3)F(7)基团应该稳定(d(xy))(2)(d(xz), d(yz))(3)基态。因此,我们通过(1)H NMR、(19)F NMR 和电子顺磁共振(EPR)光谱重新研究了[Fe(THFPrP)Py(2)]+的电子结构。[Fe(THFPrP)Py(2)]+在 CD(2)Cl(2)溶液中,(1)H NMR 中吡咯-H信号为-10.25 ppm(298 K),(19)F NMR 中 CF(2)(α)信号为-74.6 ppm(298 K),EPR 中 g(max)型信号为 g = 3.16(4.2 K)。因此,与之前的报道相反,该配合物明确地采用了(d(xy))(2)(d(xz), d(yz))(3)基态。一系列[Fe(THFPrP)L(2)]+的光谱数据与相应的 meso-四丙基卟啉配合物[Fe(TPrP)L(2)]+与各种轴向配体(L)的光谱数据进行比较表明,meso-C(3)F(7)基团稳定了(d(xy))(2)(d(xz), d(yz))(3)基态。因此,很明显,较少见的(d(xz), d(yz))(4)(d(xy))(1)基态可以通过三个主要因素稳定:(i)具有低能 π*轨道的轴向配体,(ii)褶皱卟啉环,和 (iii)meso 位置的供电子取代基。