Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
Br J Pharmacol. 2011 Feb;162(3):659-72. doi: 10.1111/j.1476-5381.2010.01068.x.
Positron emission tomography (PET) has the potential to improve our understanding of the preclinical pharmacokinetics and metabolism of therapeutic agents, and is easily translated to clinical studies in humans. However, studies involving proteins radiolabelled with clinically relevant PET isotopes are currently limited. Here we illustrate the potential of PET imaging in a preclinical study of the biodistribution and metabolism of ¹⁸F-labelled IL-1 receptor antagonist ([¹⁸F]IL-1RA) using a novel [¹⁸F]-radiolabelling technique.
IL-1RA was radiolabelled by reductive amination on lysine moieties with [¹⁸F]fluoroacetaldehyde. Sprague-Dawley rats were injected intravenously with [¹⁸F]IL-1RA and imaged with a PET camera for 2 h. For the study of IL-1RA metabolites by ex vivoγ-counting of samples, rats were killed 20 min, 1 h or 2 h after injection of [¹⁸F]IL-1RA.
[¹⁸F]IL-1RA distribution into the major organs of interest was as follows: kidneys >> liver > lungs >> brain. In lungs and liver, [¹⁸F]IL-1RA uptake peaked within 1 min post-injection then decreased rapidly to reach a plateau from 10 min post-injection. In the brain, the uptake exhibited slower pharmacokinetics with a smaller post-injection peak and a plateau from 6 min onward. IL-1RA was rapidly metabolized and these metabolites represented ∼40% of total activity in plasma and ∼80% in urine, 20 min after injection. CONCLUSIONS AND IMPLICATIONS Preclinical PET imaging is a feasible method of assessing the biodistribution of new biological compounds of therapeutic interest rapidly. The biodistribution of [¹⁸F]IL-1RA reported here is in agreement with an earlier study suggesting low uptake in the normal brain, with rapid metabolism and excretion via the kidneys.
正电子发射断层扫描(PET)具有提高我们对治疗剂临床前药代动力学和代谢理解的潜力,并且很容易转化为人体临床研究。然而,目前涉及用临床相关的 PET 同位素标记的蛋白质的研究受到限制。在这里,我们通过使用一种新的[¹⁸F]放射性标记技术,说明了¹⁸F 标记的白细胞介素-1 受体拮抗剂([¹⁸F]IL-1RA)在生物分布和代谢的临床前研究中的潜力。
IL-1RA 通过赖氨酸上的还原胺化用[¹⁸F]氟乙醛进行放射性标记。Sprague-Dawley 大鼠静脉注射[¹⁸F]IL-1RA 并用 PET 相机进行 2 小时成像。为了通过对样品的体外γ计数研究 IL-1RA 代谢物,大鼠在注射[¹⁸F]IL-1RA 后 20 分钟、1 小时或 2 小时处死。
[¹⁸F]IL-1RA 进入主要靶器官的分布如下:肾脏>肝脏>肺>脑。在肺和肝中,[¹⁸F]IL-1RA 的摄取在注射后 1 分钟内达到峰值,然后迅速下降,在注射后 10 分钟达到平台。在大脑中,摄取表现出较慢的药代动力学,注射后峰值较小,从 6 分钟开始达到平台。IL-1RA 迅速代谢,这些代谢物在注射后 20 分钟时代表血浆中总活性的约 40%和尿液中的约 80%。
临床前 PET 成像方法是一种快速评估具有治疗意义的新型生物化合物生物分布的可行方法。这里报告的[¹⁸F]IL-1RA 的生物分布与早期研究一致,表明在正常大脑中摄取率低,通过肾脏快速代谢和排泄。