Dept. of Pharmaceutical Sciences, Wayne State University, John D. Dingell VA Medical Center, Detroit, Michigan, USA.
Am J Physiol Regul Integr Comp Physiol. 2011 Jan;300(1):R12-20. doi: 10.1152/ajpregu.00421.2010. Epub 2010 Oct 13.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.
活性氧 (ROS) 是细胞信号转导级联反应(如增殖、迁移和凋亡)的重要介质。分离的β细胞长期暴露于促炎细胞因子中会导致细胞内氧化应激升高,导致胰岛β细胞死亡,最终导致糖尿病的发生。虽然线粒体电子传递链被认为是 ROS 的主要来源,但最近有几条证据表明,吞噬细胞样 NADPH 氧化酶在细胞因子介导的 ROS 生成和β细胞凋亡中发挥核心作用。然而,调节 NADPH 氧化酶的确切机制尚不清楚。为了解决这个问题,用细胞因子混合物(IL-1β、IFN-γ 和 TNF-α;每种 10ng/ml)处理 INS 832/13 细胞不同时间间隔(0-24 小时)。在这些条件下,可观察到 NADPH 氧化酶激活/细胞内 ROS 产生、p47(phox)亚基,但不是 p67(phox)亚基的表达显著增加,呈时间依赖性。此外,siRNA-p47(phox)转染或用 NADPH 氧化酶的选择性抑制剂 apocynin 处理 INS 832/13 细胞,可显著减轻细胞因子混合物诱导的这些细胞中的 ROS 生成。细胞因子混合物介导的 INS 832/13 细胞中线粒体功能障碍可通过显著丧失线粒体膜电位 (MMP) 和上调 caspase 3 活性来证明。细胞因子混合物处理还导致 NADPH 氧化酶全酶的组成部分 Rac1 的短暂(在 15 分钟内)激活。此外,已知 Rac1 抑制剂 GGTI-2147 和 NSC23766 不仅减弱了细胞因子混合物诱导的 Rac1 激活,而且还显著防止了 MMP 的丧失(NSC23766> GGTI-2147)。然而,NSC23766 对细胞因子混合物诱导的 NO 生成或 caspase 3 激活没有影响,表明可能存在其他调节机制来介导这些信号步骤。总之,这些发现表明 Rac1 介导的吞噬细胞样 NADPH 氧化酶的调节有助于细胞因子介导的β细胞中线粒体功能障碍。