Suppr超能文献

药物-S-酰基-谷胱甘肽硫酯:合成、生物分析特性、化学反应性、生物形成和降解。

Drug-S-acyl-glutathione thioesters: synthesis, bioanalytical properties, chemical reactivity, biological formation and degradation.

机构信息

Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA 94080, USA.

出版信息

Curr Drug Metab. 2011 Mar;12(3):229-44. doi: 10.2174/138920011795101886.

Abstract

Carboxylic acid-containing drugs can be metabolized to chemically-reactive acyl glucuronide, S-acyl-CoA thioester, and/or intermediate acyl-adenylate metabolites that are capable of transacylating the cysteinyl-thiol of glutathione (GSH) resulting in the formation of drug-S-acyl-GSH thioesters detected in-vivo in bile and in-vitro in hepatocytes. Authentic S-acyl-GSH thioesters of carboxylic acids can be readily synthesized by modifying the cysteinyl-thiol group of GSH with an applicable acylating reagent. Bionanalytical characterization of S-acyl-GSH derivatives has demonstrated enhanced extraction efficiency from biological samples when formic acid is included in appropriate extraction solvents, and that tandem mass spectrometry of S-acyl-GSH conjugates results in fragmentation producing a common MH+-147 Da product ion. Chemical reactivity comparisons have shown that S-acyl-CoA thioester and acyl-adenylate conjugates are more reactive than their corresponding 1-β-O-acyl glucuronides toward the transacylation of GSH forming S-acyl-GSH thioesters. S-Acyl-GSH thioester derivatives are also chemically-reactive electrophiles capable of transacylating biological nucleophiles. Glutathione S-transferases (GSTs) weakly catalyze S-acyl-GSH conjugate formation from S-acyl-CoA, acyl-adenylate, and 1-β-O-acyl glucuronide substrates; however purified-GSTs have also been shown to hydrolyze S-acyl-GSH thioesters. Mechanistic in vitro studies in hepatocytes have revealed the primary importance of the S-acyl-CoA formation pathway leading to S-acyl-GSH-adduct formation. In addition to being hydrolytically-unstable in hepatocytes and plasma, S-acyl-GSH thioesters undergo γ-glutamyltranspeptidase-mediated cleavage of the γ-glutamyl-group leading to N-acyl-cysteinylglycine amide-linked products. In summary, S-acyl GSH thioesters are indicators of reactive transacylating metabolite formation produced from the biotransformation of carboxylic acids, but since they are also chemically-reactive, perhaps these derivatives can contribute to covalent binding to tissue proteins and potential toxicity.

摘要

含羧酸的药物可以代谢为化学活性酰基葡萄糖醛酸、S-酰基辅酶 A 硫酯和/或中间酰基腺苷酸代谢物,这些代谢物能够将半胱氨酸巯基转移到谷胱甘肽(GSH)上,导致在胆汁中体内和在肝细胞中体外检测到药物-S-酰基-GSH 硫酯。羧酸的真实 S-酰基-GSH 硫酯可以通过用适用的酰化试剂修饰 GSH 的半胱氨酸巯基基团来轻易合成。S-酰基-GSH 衍生物的生物分析特征表明,在适当的提取溶剂中包含甲酸时,从生物样品中提取的效率得到增强,并且 S-酰基-GSH 缀合物的串联质谱分析导致产生共同的 MH+-147 Da 产物离子的片段化。化学反应性比较表明,S-酰基辅酶 A 硫酯和酰基腺苷酸缀合物比其相应的 1-β-O-酰基葡萄糖醛酸更具反应性,可将 GSH 进行反酰化形成 S-酰基-GSH 硫酯。S-酰基-GSH 硫酯衍生物也是具有化学反应性的亲电试剂,能够将生物亲核试剂进行反酰化。谷胱甘肽 S-转移酶(GSTs)弱催化 S-酰基-GSH 缀合物从 S-酰基辅酶 A、酰基腺苷酸和 1-β-O-酰基葡萄糖醛酸底物形成;然而,已证明纯化的-GSTs 还可以水解 S-酰基-GSH 硫酯。肝细胞中的体外机制研究揭示了 S-酰基辅酶 A 形成途径导致 S-酰基-GSH 加合物形成的主要重要性。除了在肝细胞和血浆中水解不稳定外,S-酰基-GSH 硫酯还会经历 γ-谷氨酰转肽酶介导的 γ-谷氨酰基的裂解,导致 N-酰基-半胱氨酰甘氨酸酰胺连接产物。总之,S-酰基 GSH 硫酯是由羧酸的生物转化产生的反应性反酰化代谢物形成的指标,但由于它们也具有化学反应性,也许这些衍生物可以有助于与组织蛋白的共价结合和潜在毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验