文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

研究小分子的化学结构、生物活性谱和分子靶标之间的相关性。

Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules.

机构信息

National Center for Biotechnology Information, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.

出版信息

Bioinformatics. 2010 Nov 15;26(22):2881-8. doi: 10.1093/bioinformatics/btq550. Epub 2010 Oct 13.


DOI:10.1093/bioinformatics/btq550
PMID:20947527
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2971579/
Abstract

MOTIVATION: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound-target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. RESULTS: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. AVAILABILITY: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/).

摘要

动机:由于 NCI-60 数据集固有的基于细胞的特性,之前大多数基于该数据集的数据挖掘研究几乎无法深入了解筛选化合物的分子靶标。另一方面,PubChem 中丰富的化合物-靶标关联信息可以为测试化合物的分子靶标提供广泛的实验证据。因此,通过利用来自两个公共存储库的数据,人们可以同时研究来自 NCI-60 数据集的小分子的生物活性谱(细胞水平)与其与 PubChem 中相关蛋白靶标的相互作用模式(分子水平)之间的相关性。

结果:我们通过提供生物活性谱、蛋白质靶标和化学结构之间的联系来研究了一组 37 个小分子。根据它们的生物活性谱进行了化合物的层次聚类。我们发现,化合物按照作用方式相似的方式聚类,这与化学结构密切相关。此外,我们观察到具有相似生物活性谱的化合物与相关蛋白靶标也具有相似的相互作用模式,特别是在化学结构相关的情况下。目前的工作提出了一种结合和挖掘 NCI-60 数据集和 PubChem 的新策略。该分析表明,生物活性谱比较可以深入了解分子水平的作用方式,从而有助于基于知识发现具有理想药理特性的新型化合物。

可用性:生物活性谱数据和靶标注释信息可在 PubChem BioAssay 数据库(ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/)中公开获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/82ce8d49ee15/btq550f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/1c0d6caab7d7/btq550f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/473b6eb67388/btq550f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/e657d342cb89/btq550f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/82ce8d49ee15/btq550f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/1c0d6caab7d7/btq550f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/473b6eb67388/btq550f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/e657d342cb89/btq550f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8809/2971579/82ce8d49ee15/btq550f4.jpg

相似文献

[1]
Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules.

Bioinformatics. 2010-10-13

[2]
PubChem: a public information system for analyzing bioactivities of small molecules.

Nucleic Acids Res. 2009-7

[3]
An overview of the PubChem BioAssay resource.

Nucleic Acids Res. 2009-11-19

[4]
Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis.

BMC Bioinformatics. 2012-5-4

[5]
PubChem as a public resource for drug discovery.

Drug Discov Today. 2010-10-21

[6]
Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining.

J Chem Inf Model. 2011-8-18

[7]
Exploring Chemical Information in PubChem.

Curr Protoc. 2021-8

[8]
Collation and data-mining of literature bioactivity data for drug discovery.

Biochem Soc Trans. 2011-10

[9]
PubChem Substance and Compound databases.

Nucleic Acids Res. 2016-1-4

[10]
PubChem's BioAssay Database.

Nucleic Acids Res. 2011-12-2

引用本文的文献

[1]
An Integrated Molecular Networking and Docking Approach to Characterize the Metabolome of and Its Pharmaceutical Potentials.

Metabolites. 2023-10-23

[2]
JAC4 Protects from X-ray Radiation-Induced Intestinal Injury by JWA-Mediated Anti-Oxidation/Inflammation Signaling.

Antioxidants (Basel). 2022-5-27

[3]
Discovery of Fungus-Specific Targets and Inhibitors Using Chemical Phenotyping of Pathogenic Spore Germination.

mBio. 2021-8-31

[4]
Unearthing new genomic markers of drug response by improved measurement of discriminative power.

BMC Med Genomics. 2018-2-6

[5]
Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours.

Oncotarget. 2017-9-15

[6]
Large-scale bioactivity analysis of the small-molecule assayed proteome.

PLoS One. 2017-2-8

[7]
bioassayR: Cross-Target Analysis of Small Molecule Bioactivity.

J Chem Inf Model. 2016-7-25

[8]
An integrative analysis of small molecule transcriptional responses in the human malaria parasite Plasmodium falciparum.

BMC Genomics. 2015-12-4

[9]
Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis.

Bioinformatics. 2014-9-1

[10]
Pathway analysis for drug repositioning based on public database mining.

J Chem Inf Model. 2014-2-5

本文引用的文献

[1]
An overview of the PubChem BioAssay resource.

Nucleic Acids Res. 2009-11-19

[2]
PubChem BioAssays as a data source for predictive models.

J Mol Graph Model. 2009-10-12

[3]
A novel method for mining highly imbalanced high-throughput screening data in PubChem.

Bioinformatics. 2009-10-13

[4]
PubChem as a source of polypharmacology.

J Chem Inf Model. 2009-9

[5]
PubChem: a public information system for analyzing bioactivities of small molecules.

Nucleic Acids Res. 2009-7

[6]
Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data.

J Chem Inf Model. 2009-2

[7]
Data mining PubChem using a support vector machine with the Signature molecular descriptor: classification of factor XIa inhibitors.

J Mol Graph Model. 2008-11

[8]
Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.

BMC Bioinformatics. 2008-9-25

[9]
Data mining the NCI60 to predict generalized cytotoxicity.

J Chem Inf Model. 2008-7

[10]
Key role of topoisomerase I inhibitors in the treatment of recurrent and refractory epithelial ovarian carcinoma.

Expert Rev Anticancer Ther. 2008-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索