Department of Sciences, DNRF Centre Glass and Time IMFUFA, Roskilde University, P.O. Box 260, Roskilde DK-4000, Denmark.
J Chem Phys. 2010 Oct 14;133(14):144906. doi: 10.1063/1.3490664.
In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required. We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103, 144503 (2009)] We apply the results from molecular dynamics simulations to the extended Navier-Stokes equations that include the coupling between intrinsic angular momentum and linear momentum. For a flow driven by an external field the coupling will reduce the flow rate significantly for nanoscale geometries. The coupling also enables conversion of rotational electrical energy into fluid linear momentum and we find that in order to obtain measurable flow rates the electrical field strength must be in the order of 0.1 MV m(-1) and rotate with a frequency of more than 100 MHz.
在本文中,我们使用平衡分子动力学评估了液态水的旋转粘度和两个自旋粘度。水通过灵活的 SPC/Fw 模型建模,其中库仑相互作用通过 Wolf 方法计算,这使得能够进行所需的长时间模拟。我们发现,在 284 到 319 K 的温度范围内,旋转粘度与温度无关。另一方面,两个自旋粘度随温度升高而降低,并且发现比 Bonthuis 等人[Phys. Rev. Lett. 103, 144503 (2009)]估计的大两个数量级。我们将分子动力学模拟的结果应用于扩展的纳维-斯托克斯方程,其中包括固有角动量和线性动量之间的耦合。对于由外部场驱动的流动,耦合将显著降低纳米级几何形状的流速。耦合还能够将旋转电能转换为流体线性动量,我们发现为了获得可测量的流速,电场强度必须在 0.1 MV m(-1)量级,并且以超过 100 MHz 的频率旋转。