Suppr超能文献

通过束缚粒子运动以高时间分辨率探测 DNA 构象变化。

Probing DNA conformational changes with high temporal resolution by tethered particle motion.

机构信息

Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), F-31062 Toulouse, France. CNRS, F-31062 Toulouse, France.

出版信息

Phys Biol. 2010 Oct 15;7(4):046003. doi: 10.1088/1478-3975/7/4/046003.

Abstract

The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.

摘要

束缚粒子运动(TPM)技术通过跟踪通过单条 DNA 分子束缚在表面上的粒子探针的布朗运动,并检测其运动幅度的变化,从而告知 DNA 分子的构象变化,例如在环化或与蛋白质相互作用时。在这方面,我们讨论了 TPM 的时间分辨率,它强烈依赖于粒子-DNA 复合物的弛豫时间,即通过扩散探索其构象空间所需的特征时间。通过比较理论、模拟和实验,我们提出了在动力学水平上对 TPM 的校准:我们分析了弛豫时间如何随 DNA 轮廓长度(从 401 到 2080 个碱基对)和粒子半径(从 20 到 150nm)而增长。值得注意的是,我们证明,对于半径为 20nm 或更小的粒子,粒子和表面引起的流体动力摩擦不会显著减慢 DNA 的速度。这使我们能够在不同的实验环境中确定 TPM 的最佳时间分辨率,最短可达 20ms。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验