Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
Chemphyschem. 2010 Dec 3;11(17):3645-55. doi: 10.1002/cphc.201000564.
A basic N,N-dimethylaminoazobenzene-fullerene (C(60)) dyad molecular skeleton is modelled and synthesized. In spite of the myriad use of azobenzene as a photo- and electrochromic moiety, the idea presented herein is to adopt a conceptually different path by using it as a bridge in a donor-bridge-acceptor single-molecular skeleton, connecting the electron acceptor N-methylfulleropyrrolidine with an electron donor N,N-dimethylaniline. Addition of trifluoroacetic acid (TFA) results in a drastic colour change of the dyad from yellow to pink in dichloromethane (DCM). The structure of the protonated species are established from electronic spectroscopy and time-dependent density functional theory (TD-DFT) calculations. UV/Vis spectroscopic investigations reveal the disappearance of the 409 nm (1)(π→π*) transition with appearance of new features at 520 and 540 nm, attributed to protonated β and α nitrogens, respectively, along with a finite weight of the C(60) pyrrolidinic nitrogen. Calculations reveal intermixing of n((N=N))→π*((N=N)) and charge transfer (CT) transitions in the neutral dyad, whereas, the n((N=N))→π*((N=N)) transition in the protonated dyad is buried under the dominant (1)(π →π*) feature and is red-shifted upon Gaussian deconvolution. The experimental binding constants involved in the protonation of N,N-dimethylanilineazobenzene and the dyad imply an almost equal probability of existence of both α- and β-protonated forms. Larger binding constants for the protonated dyads imply more stable dyad complexes than for the donor counterparts. One of the most significant findings upon protonation resulted in frontier molecular orbital (FMO) switching with the dyad LUMO located on the donor part, evidenced from electrochemical investigations. The appearance of a new peak, prior to the first reduction potential of N-methylfulleropyrrolidine, clearly indicates location of the first incoming electron on the donor-centred LUMO of the dyad, corroborated by unrestricted DFT calculations performed on the monoanions of the protonated dyad. The protonation of the basic azo nitrogens thus enables a rational control over the energetics and location of the FMOs, indispensable for electron transport across molecular junctions in realizing futuristic current switching devices.
构建并模拟了一个基本的 N,N-二甲基氨基偶氮苯-富勒烯(C(60))偶联物分子骨架。尽管偶氮苯作为光致变色和电致变色基团有多种用途,但本文提出的设想是通过将其用作供体-桥-受体单分子骨架中的桥梁,将电子受体 N-甲基富勒烯吡咯烷与电子给体 N,N-二甲基苯胺连接起来,从而采用一种概念上不同的方法。在二氯甲烷(DCM)中添加三氟乙酸(TFA)会导致偶联物的颜色从黄色急剧变为粉红色。质子化物种的结构是通过电子光谱和时变密度泛函理论(TD-DFT)计算确定的。紫外可见光谱研究表明,409nm(1)(π→π*)跃迁消失,同时在 520nm 和 540nm 处出现新的特征,分别归因于质子化的β和α氮,以及 C(60)吡咯啉氮的有限权重。计算表明,在中性偶联物中 n((N=N))→π*((N=N))和电荷转移(CT)跃迁混合,而在质子化偶联物中,n((N=N))→π*((N=N))跃迁被主导的(1)(π→π*)特征所掩盖,并在高斯分解后发生红移。N,N-二甲基苯胺偶氮苯和偶联物质子化涉及的实验结合常数表明,α-和β-质子化形式几乎具有相同的存在概率。质子化偶联物的较大结合常数表明其与供体对应物相比具有更稳定的偶联物复合物。质子化后最显著的发现之一是前线分子轨道(FMO)发生切换,偶联物的最低未占据分子轨道(LUMO)位于供体部分,这是从电化学研究中得出的。在 N-甲基富勒烯吡咯烷的第一个还原电位之前出现新的峰,清楚地表明第一个进入电子位于偶联物的供体中心 LUMO 上,这一结果得到了对质子化偶联物的单阴离子进行的无限制密度泛函理论(DFT)计算的证实。碱性偶氮氮的质子化使得对 FMO 的能量和位置进行合理控制成为可能,这对于在实现未来的电流开关器件中跨越分子结的电子输运是必不可少的。