SISSA/ELETTRA NanoInnovation Laboratory, Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149 Basovizza, Trieste, Italy.
ACS Nano. 2010 Nov 23;4(11):6607-16. doi: 10.1021/nn101872w. Epub 2010 Oct 19.
Nanopatterning of biomolecules on functionalized surfaces offers an excellent route for ultrasensitive protein immobilization, for interaction measurements, and for the fabrication of devices such as protein nanoarrays. An improved understanding of the physics and chemistry underlying the device properties and the recognition process is necessary for performance optimization. This is especially important for the recognition and immobilization of intrinsically disordered proteins (IDPs), like the prion protein (PrP), a partial IDP, whose folding and stability may be influenced by local environment and confinement. Atomic force microscopy allows for both highly controllable nanolithography and for sensitive and accurate direct detection, via precise topographic measurements on ultraflat surfaces, of protein interactions in a liquid environment, thus different environmental parameters affecting the biorecognition phenomenon can be investigated in situ. Using nanografting, a tip-induced lithographic technique, and an affinity immobilization strategy based on two different histidine tagged antibodies, with high nM affinity for two different regions of PrP, we successfully demonstrated the immobilization of recombinant mouse PrP onto nanostructured surfaces, in two different orientations. Clear discrimination of the two molecular orientations was shown by differential height (i.e., topographic) measurements, allowing for the estimation of binding parameters and the full characterization of the nanoscale biorecognition process. Our work opens the way to several high sensitivity diagnostic applications and, by controlling PrP orientation, allows for the investigation of unconventional interactions with partially folded proteins, and may serve as a platform for protein misfolding and refolding studies on PrP and other thermodynamically unstable, fibril forming, proteins.
在功能化表面上对生物分子进行纳米图案化,为超灵敏的蛋白质固定化、相互作用测量以及蛋白质纳米阵列等器件的制造提供了一条极好的途径。为了实现性能优化,有必要深入了解器件特性和识别过程背后的物理和化学原理。这对于识别和固定化天然无序蛋白质(IDP),如朊病毒蛋白(PrP),尤为重要。PrP 是部分 IDP,其折叠和稳定性可能受到局部环境和限制的影响。原子力显微镜(AFM)允许在超平表面上进行高度可控的纳米光刻,并通过精确的形貌测量对液体环境中的蛋白质相互作用进行灵敏且准确的直接检测,从而可以原位研究不同的环境参数如何影响生物识别现象。我们使用纳米嫁接技术,一种基于尖端诱导的光刻技术,以及基于两种不同组氨酸标记抗体的亲和固定化策略,这两种抗体对 PrP 的两个不同区域具有高纳摩尔亲和力,成功地将重组小鼠 PrP 固定到纳米结构表面上,有两种不同的取向。通过差分高度(即形貌)测量清楚地区分了这两种分子取向,从而可以估计结合参数并对纳米级生物识别过程进行全面表征。我们的工作为几种高灵敏度诊断应用开辟了道路,并通过控制 PrP 的取向,可以研究与部分折叠蛋白质的非常规相互作用,并且可以作为研究 PrP 和其他热力学不稳定、形成纤维的蛋白质的蛋白质错误折叠和重折叠的平台。