Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70808, USA.
Mol Ecol. 2010 Nov;19(21):4581-2. doi: 10.1111/j.1365-294X.2010.04851.x.
Despite the widespread use and obvious strengths of model-based methods for phylogeographic study, a persistent concern for such analyses is related to the definition of the model itself. The study by Peter et al. (2010) in this issue of Molecular Ecology demonstrates an approach for overcoming such hurdles. The authors were motivated by a deceptively simple goal; they sought to infer whether a population has remained at a low and stable size or has undergone a decline, and certainly there is no shortage of software packages for such a task (e.g., see list of programs in Excoffier & Heckel 2006). However, each of these software packages makes basic assumptions about the underling population (e.g., is the population subdivided or panmictic); these assumptions are explicit to any model-based approach but can bias parameter estimates and produce misleading inferences if the model does not approximate the actual demographic history in a reasonable manner. Rather than guessing which model might be best for analyzing the data (microsatellite data from samples of chimpanzees), Peter et al. (2010) quantify the relative fit of competing models for estimating the population genetic parameters of interest. Complemented by a revealing simulation study, the authors highlight the peril inherent to model-based inferences that lack a statistical evaluation of the fit of a model to the data, while also demonstrating an approach for model selection with broad applicability to phylogeographic analysis.
尽管基于模型的方法在系统地理学研究中被广泛应用且具有明显优势,但此类分析一直存在一个持续的关注点,即与模型本身的定义有关。本期《分子生态学》中,Peter 等人的研究展示了一种克服此类障碍的方法。作者的动机是一个看似简单的目标:他们试图推断一个种群是否一直保持在低且稳定的规模,还是经历了下降,当然,有很多软件包可用于此类任务(例如,见 Excoffier 和 Heckel 2006 中的程序列表)。然而,这些软件包中的每一个都对基础种群做出了基本假设(例如,种群是否分裂或混合);这些假设对于任何基于模型的方法都是明确的,但如果模型不能以合理的方式接近实际的人口历史,就会偏倚参数估计并产生误导性推断。Peter 等人(2010)并没有猜测哪种模型最适合分析数据(来自黑猩猩样本的微卫星数据),而是量化了竞争模型在估计感兴趣的种群遗传参数方面的相对适应性。通过一项具有启示性的模拟研究,作者强调了缺乏对模型与数据拟合程度的统计评估的基于模型推断所固有的风险,同时还展示了一种广泛适用于系统地理学分析的模型选择方法。