Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
Phys Chem Chem Phys. 2010 Dec 7;12(45):15111-8. doi: 10.1039/c0cp00709a. Epub 2010 Oct 19.
The structure, isomerization pathways and vibrational spectra of the important N-hydroxyurea (HU) molecule were studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the MP2/6-311++G(2d,2p) level of theory. In agreement with theoretical predictions, 1Ea represents the most stable keto isomer in the gas-phase, being the dominant species trapped in argon matrices, while the 1Za isomer also contributes to the spectrum of isolated HU molecules. According to the calculated abundance values at the temperature of evaporation of the compound (393 K), the 1Ea and 1Za isomers together with a small contribution of 1Eb are expected to appear in the experimental spectra. Since the barrier for interconversion 1Ea↔ 1Eb is only ∼2 kJ mol(-1), these two isomers are in equilibrium in the matrices and, at low temperature, the population of the less stable 1Eb form is too small to be observed. Full assignment of the observed spectra of N-hydroxyurea and its deuterium analogue was undertaken on the basis of comparison with theoretical data.
采用矩阵隔离傅里叶变换红外光谱和分子轨道计算(在 MP2/6-311++G(2d,2p) 理论水平上)研究了重要的 N-羟基脲(HU)分子的结构、异构化途径和振动光谱。与理论预测一致,1Ea 代表气相中最稳定的酮异构体,是在氩气基质中捕获的主要物质,而 1Za 异构体也对分离 HU 分子的光谱有贡献。根据化合物蒸发温度(393 K)下的计算丰度值,预计在实验光谱中会出现 1Ea 和 1Za 异构体以及少量的 1Eb。由于 1Ea↔1Eb 异构化的能垒仅约为 2 kJ mol(-1),这两种异构体在基质中处于平衡状态,在低温下,不太稳定的 1Eb 形式的丰度太小,无法观察到。根据与理论数据的比较,对 N-羟基脲及其氘代类似物的观察到的光谱进行了完全的归属。