Suppr超能文献

多模型推断与自适应管理。

Multimodel inference and adaptive management.

机构信息

Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0984, USA.

出版信息

J Environ Manage. 2011 May;92(5):1360-4. doi: 10.1016/j.jenvman.2010.10.012. Epub 2010 Oct 20.

Abstract

Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study's inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

摘要

生态学是一门固有的复杂科学,它涉及相关变量、非线性相互作用和多层次的模式和过程,这使得实验难以得出清晰、有力的推论。自然资源管理者、政策制定者和利益相关者依赖科学为他们提供及时和准确的管理建议。然而,理清生态系统内部相互作用的复杂性所需的时间往往远远超过做出管理决策的可用时间。应对这个问题的一种方法是多模型推断。多模型推断通过计算多个竞争假设之间的可能性来评估不确定性,但多模型推断的结果往往存在歧义。尽管如此,生态学家可能仍面临提供管理建议的压力,而不论其研究推论的强度如何。我们回顾了《野生动物管理杂志》(JWM)和《保护生物学杂志》(CB)中的论文,以量化多模型推断方法的流行程度、由此产生的推论(弱与强),以及作者如何处理不确定性。JWM 和 CB 中的文章分别有 38%和 14%采用了多模型推断方法。很少观察到强推论,只有 7%的 JWM 文章和 20%的 CB 文章得出了强推论。我们发现,两个期刊中大多数弱推论论文(59%)都给出了具体的管理建议。大多数管理建议都忽略了模型选择的不确定性。我们建议,当研究结果产生弱推论时,适应性管理是解决不确定性的理想方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验