Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA.
J Physiol. 2010 Dec 15;588(Pt 24):5077-87. doi: 10.1113/jphysiol.2010.198382. Epub 2010 Oct 20.
Critical speed (CS) constitutes an important metabolic and performance demarcator. However, active skeletal muscle blood flow distribution specifically surrounding CS remains unknown. We tested the hypotheses that CS could be accurately determined in the running rat and that measurement of hindlimb inter- and intramuscular blood flow below and above CS would support that the greatest muscle fibre recruitment above, relative to below, CS occurs in the predominantly glycolytic muscles. Seven male Sprague-Dawley rats performed five constant-speed tests to exhaustion at speeds between 95 and 115% of the speed that elicited to determine CS. Subsequent constant-speed tests were performed at speeds incrementally surrounding CS to determine time to exhaustion, V(O2), and hindlimb muscle blood flow distribution. Speed and time to exhaustion conformed to a hyperbolic relationship (r(2) = 0.92 ± 0.03) which corresponded to a linear 1/time function (r(2) = 0.93 ± 0.02) with a CS of 48.6 ± 1.0 m min(-1). Time to exhaustion below CS was ∼ 5× greater (P < 0.01) than that above. Below CS V(O2) stabilized at a submaximal value (58.5 ± 2.5 ml kg(-1) min(-1)) whereas above CS (81.7 ± 2.5 ml kg(-1) min(-1)) increased to (84.0 ± 1.8 ml kg(-1) min(-1), P > 0.05 vs. above CS). The 11 individual muscles or muscle parts that evidenced the greatest blood flow increases above, relative to below, CS were composed of ≥ 69% Type IIb/d/x muscle fibres. Moreover, there was a significant correlation (P < 0.05, r = 0.42) between the increased blood flow above expressed relative to below CS and the percentage Type IIb/d/x fibres found in the individual muscles or muscle parts. These data validate the powerful CS construct in the rat and identify that running above CS, relative to below CS, incurs disproportionate blood flow increases (indicative of recruitment) in predominantly highly glycolytic muscle fibres.
临界速度 (CS) 是一个重要的代谢和性能标志。然而,关于 CS 周围的活跃骨骼肌血流分布仍不清楚。我们测试了以下两个假设:在跑步的大鼠中可以准确确定 CS,并且在 CS 以下和以上测量后肢肌肉间和肌肉内的血流,可以支持在 CS 以上,相对于 CS 以下,最大的肌肉纤维募集发生在以糖酵解为主的肌肉中。七只雄性 Sprague-Dawley 大鼠在 95%至 115%的速度下进行了五次恒速测试,直到力竭,以确定 CS。随后在 CS 周围以递增的速度进行恒速测试,以确定力竭时间、V(O2)和后肢肌肉血流分布。速度和力竭时间符合双曲线关系(r(2) = 0.92 ± 0.03),与 CS 为 48.6 ± 1.0 m min(-1)的线性 1/时间函数(r(2) = 0.93 ± 0.02)相对应。CS 以下的力竭时间大约是 CS 以上的 5 倍(P < 0.01)。CS 以下的 V(O2)稳定在亚最大值(58.5 ± 2.5 ml kg(-1) min(-1)),而 CS 以上的 V(O2)(81.7 ± 2.5 ml kg(-1) min(-1))增加到(84.0 ± 1.8 ml kg(-1) min(-1)),CS 以上的 V(O2)与 CS 以上的相比没有显著差异(P > 0.05)。在 CS 以上的血流增加最大的 11 个肌肉或肌肉部分,相对于 CS 以下,由 ≥ 69%的 IIb/d/x 型肌肉纤维组成。此外,在 CS 以上的血流增加与个体肌肉或肌肉部分中发现的 IIb/d/x 型纤维的百分比之间存在显著相关性(P < 0.05,r = 0.42)。这些数据验证了大鼠中强大的 CS 结构,并确定了与 CS 以下相比,在 CS 以上跑步会导致以糖酵解为主的肌肉纤维不成比例的血流增加(提示募集)。