Department of Chemistry, and Center for Advanced Materials and Nanotechnology, Lehigh University Bethlehem, Pennsylvania 18015, USA.
Langmuir. 2010 Nov 2;26(21):16401-11. doi: 10.1021/la102069a.
Adsorption and decomposition of cyclohexanone (C(6)H(10)O) on Pt(111) and on two ordered Pt-Sn surface alloys, (2 × 2)-Sn/Pt(111) and (√3 × √3)R30°-Sn/Pt(111), formed by vapor deposition of Sn on the Pt(111) single crystal surface were studied with TPD, HREELS, AES, LEED, and DFT calculations with vibrational analyses. Saturation coverage of C(6)H(10)O was found to be 0.25 ML, independent of the Sn surface concentration. The Pt(111) surface was reactive toward cyclohexanone, with the adsorption in the monolayer being about 70% irreversible. C(6)H(10)O decomposed to yield CO, H(2)O, H(2), and CH(4). Some C-O bond breaking occurred, yielding H(2)O and leaving some carbon on the surface after TPD. HREELS data showed that cyclohexanone decomposition in the monolayer began by 200 K. Intermediates from cyclohexanone decomposition were also relatively unstable on Pt(111), since coadsorbed CO and H were formed below 250 K. Surface Sn allowed for some cyclohexanone to adsorb reversibly. C(6)H(10)O dissociated on the (2 × 2) surface to form CO and H(2)O at low coverages, and methane and H(2) in smaller amounts than on Pt(111). Adsorption of cyclohexanone on (√3 × √3)R30°-Sn/Pt(111) at 90 K was mostly reversible. DFT calculations suggest that C(6)H(10)O adsorbs on Pt(111) in two configurations: by bonding weakly through oxygen to an atop Pt site and more strongly through simultaneously oxygen and carbon of the carbonyl to a bridged Pt-Pt site. In contrast, on alloy surfaces, C(6)H(10)O bonds preferentially to Sn. The presence of Sn, furthermore, is predicted to make the formation of the strongly bound C(6)H(10)O species bonding through O and C, which is a likely decomposition precursor, thermodynamically unfavorable. Alloying with Sn, thus, is shown to moderate adsorptive and reactive activity of Pt(111).
环己酮(C(6)H(10)O)在 Pt(111)表面和通过 Sn 蒸汽沉积在 Pt(111)单晶表面上形成的两种有序 Pt-Sn 表面合金(2 × 2)-Sn/Pt(111)和(√3 × √3)R30°-Sn/Pt(111)上的吸附和分解进行了研究,采用 TPD、HREELS、AES、LEED 和 DFT 计算并进行了振动分析。发现 C(6)H(10)O 的饱和覆盖度为 0.25 ML,与 Sn 表面浓度无关。Pt(111)表面对环己酮具有反应性,单层吸附约 70%不可逆。C(6)H(10)O 分解生成 CO、H(2)O、H(2)和 CH(4)。一些 C-O 键断裂,在 TPD 后留下一些碳在表面上。HREELS 数据表明,在单层中环己酮的分解在 200 K 时开始。由于在 250 K 以下形成共吸附的 CO 和 H,因此在 Pt(111)上,环己酮分解的中间体也相对不稳定。表面 Sn 允许一些环己酮可逆吸附。C(6)H(10)O 在(2 × 2)表面上在低覆盖度下解离形成 CO 和 H(2)O,并且比在 Pt(111)上以更小的量形成甲烷和 H(2)。环己烷在 90 K 下吸附在(√3 × √3)R30°-Sn/Pt(111)上主要是可逆的。DFT 计算表明,C(6)H(10)O 在 Pt(111)上以两种构型吸附:通过氧弱键合到 atop Pt 位,通过同时氧和羰基的碳强键合到桥接的 Pt-Pt 位。相比之下,在合金表面上,C(6)H(10)O 优先键合到 Sn。此外,预测 Sn 的存在使通过 O 和 C 形成的强结合 C(6)H(10)O 物种的形成,这是可能的分解前体,热力学上不利。因此,与 Sn 合金化被证明可以调节 Pt(111)的吸附和反应活性。