纳米纤维基质促进体外人胚胎干细胞源性神经前体细胞的神经元分化。
Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro.
机构信息
Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
出版信息
Tissue Eng Part A. 2011 Mar;17(5-6):855-63. doi: 10.1089/ten.TEA.2010.0377. Epub 2010 Dec 18.
The potential of human embryonic stem (ES) cells as experimental therapies for neuronal replacement has recently received considerable attention. In view of the organization of the mature nervous system into distinct neural circuits, key challenges of such therapies are the directed differentiation of human ES cell-derived neural precursors (NPs) into specific neuronal types and the directional growth of axons along specified trajectories. In the present study, we cultured human NPs derived from the NIH-approved ES line BGO1 on polycaprolactone fiber matrices of different diameter (i.e., nanofibers and microfibers) and orientation (i.e., aligned and random); fibers were coated with poly-L-ornithine/laminin to mimic the extracellular matrix and support the adhesion, viability, and differentiation of NPs. On aligned fibrous meshes, human NPs adopt polarized cell morphology with processes extending along the axis of the fiber, whereas NPs on plain tissue culture surfaces or random fiber substrates form nonpolarized neurite networks. Under differentiation conditions, human NPs cultured on aligned fibrous substrates show a higher rate of neuronal differentiation than other matrices; 62% and 86% of NPs become TUJ1 (+) early neurons on aligned micro- and nanofibers, respectively, whereas only 32% and 27% of NPs acquire the same fate on random micro- and nanofibers. Metabolic cell activity/viability studies reveal that fiber alignment and diameter also have an effect on NP viability, but only in the presence of mitogens. Our findings demonstrate that fibrous substrates serve as an artificial extracellular matrix and provide a microenviroment that influences key aspects of the neuronal differentiation of ES-derived NPs.
人类胚胎干细胞(ES 细胞)作为神经元替代的实验治疗方法具有很大的潜力,最近受到了广泛关注。鉴于成熟的神经系统组织成不同的神经回路,这种治疗方法的关键挑战是将人 ES 细胞衍生的神经前体细胞(NPs)定向分化为特定的神经元类型,以及沿着特定轨迹引导轴突的生长。在本研究中,我们在不同直径(即纳米纤维和微纤维)和取向(即定向和随机)的聚己内酯纤维基质上培养了来自 NIH 批准的 ES 细胞系 BGO1 的人 NPs;纤维用聚-L-鸟氨酸/层粘连蛋白包被以模拟细胞外基质,支持 NPs 的黏附、存活和分化。在定向纤维网格上,人 NPs 采用具有沿纤维轴延伸的突起的极化细胞形态,而在普通组织培养表面或随机纤维基质上的 NPs 则形成非极化的神经突网络。在分化条件下,在定向纤维基质上培养的人 NPs 的神经元分化率高于其他基质;在定向微纤维和纳米纤维上,分别有 62%和 86%的 NPs 成为 TUJ1(+)早期神经元,而在随机微纤维和纳米纤维上,只有 32%和 27%的 NPs 具有相同的命运。代谢细胞活性/存活研究表明,纤维定向和直径也会影响 NPs 的存活,但仅在存在有丝分裂原的情况下。我们的研究结果表明,纤维基质可作为人工细胞外基质,并提供影响 ES 细胞衍生的 NPs 神经元分化的关键方面的微环境。