Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77845-3128, USA.
Magn Reson Imaging. 2011 Feb;29(2):209-15. doi: 10.1016/j.mri.2010.08.008. Epub 2010 Oct 25.
This article presents a method to explore the flexibility of channel reduction in k-domain parallel imaging (PI) with massive arrays to improve the computation efficiency. In PI, computation cost increases with the number of channels. For the k-domain methods requiring channel-by-channel reconstruction, this increase can be significant with massive arrays. In this article, a method for efficient k-domain PI reconstruction in large array systems is proposed. The method is based on the fact that in large arrays the channel sensitivity is localized, which allows channel reduction through channel cross correlation. The method is tested with simulated and in vivo MRI data from a 32-channel and 64-channel systems using the multicolumn multiline interpolation (MCMLI) method. Results show that the proposed algorithm can achieve similar or improved reconstruction quality with significantly reduced computation time for massive arrays with localized sensitivity.
本文提出了一种方法,通过大量阵列来探索 k 域并行成像 (PI) 中通道减少的灵活性,以提高计算效率。在 PI 中,计算成本随通道数量的增加而增加。对于需要逐通道重建的 k 域方法,在大量阵列中,这种增加可能非常显著。本文提出了一种在大型阵列系统中进行高效 k 域 PI 重建的方法。该方法基于这样一个事实,即在大型阵列中,通道灵敏度是局部化的,这允许通过通道互相关进行通道减少。该方法使用多列多行插值 (MCMLI) 方法,对来自 32 通道和 64 通道系统的模拟和体内 MRI 数据进行了测试。结果表明,对于具有局部化灵敏度的大量阵列,该算法可以在计算时间显著减少的情况下,实现相似或更好的重建质量。